This problem is providing us with the chemical equation for the decomposition of water to hydrogen and oxygen, the involved bond energies and asks for the total energy of the reaction as well as whether it is endothermic or exothermic. At the end, one comes to the conclusion that it is exothermic because the total energy is -425 kJ.
<h3>Bond energy:</h3>
In chemistry, bond energies are defined as the necessary energy to break a bond between two atoms. In this case, we see that water, H2O has two H-O bonds and hydrogen and oxygen have two H-H and one O=O bonds, respectively.
Thus, we write the following heat equation, which comprises the aforementioned bond energies and the stoichiometric coefficients in the reaction:

Hence, we plug in the given bond energies to obtain:

Where the negative suggests this is an exothermic reaction as it releases energy (negative enthalpy).
Learn more about bond energies: brainly.com/question/26141360
The vertical component of velocity is zero
Answer:
This 2.5061243 moles is in 4 liters.
Answer: Option (d) is the correct answer.
Explanation:
Endothermic process is a process in which energy or heat is absorbed by reactant species.
For example, melting of ice cubes is an endothermic process as it is absorbing heat from the surrounding and gives a cooling effect.
Thus, we can conclude that the process in which a substance gains energy is an endothermic process.
Answer is: mass of lithium fluoride is 3,732 grams.
m(solution) = 18,66 g.
ω(solution) = 20% = 20% ÷ 100% = 0,2.
m(LiF) = ?
ω(solution) = m(LiF) ÷ m(solution).
m(LiF) = ω(solution) · m(solution).
m(LiF) = 0,2 · 18,66 g.
m(LiF) = 3,732 g.