516 is the dividend, 3 is the divisor, 172 would be the quotient.
3 goes into 5 once with a 2 remainder, that 2 turns into 21 because of the 1 in 516 which 3 goes into seven times with a remainder of zero turning into 6, which 3 goes into twice, making the quotient 172.
172 times 3 is 516
K (-3,-3)
L (1,-1)
M (-1,-5)
N (-5,-7)
Answer:
Student B is correct
Student A failed to distribute -4 and -6 when opening the brackets in the first step
Step-by-step explanation:
The solution Student A gave was:
2x - 4(3x + 6) = -6(2x + 1) - 4
2x - 12x + 6 = -12x + 1 - 4
-10x + 6 = -12x - 3
2x = -9
x = -4 _1 2 ( -4 1/2)
The solution Student B gave was:
2x - 4(3x + 6) = -6(2x + 1) - 4
2x - 12x - 24 = -12x - 6 - 4
-10x - 24 = -12x - 10
2x = 14
x = 7
Student B is correct.
Explanation of the error:
Student A failed to distribute -4 and -6 when opening the brackets in the first step.
That is,
2x - 4(3x + 6) = -6(2x + 1) - 4
To open this bracket, we will distribute, -4 and -6 so that we get
2x (-4 × 3x) + (-4 × +6) = (-6×2x) + (-6 × +1) - 4
Then we will get
2x -12x -24 = -12x -6 -4
Adding the like terms
-10x - 24 = -12x - 10
Collecting like terms
-10x + 12x = -10 + 24
∴ 2x = 14
x = 14 / 2
Hence,
x = 7
1. 7x - 28 = 84
2. 7x = 112
3. x = 16
Answer:

Step-by-step explanation:
The triangles are drawn below.
CD is perpendicular to AB as CD is height to AB.
Therefore, angles
°
So, triangles ΔCBD and ΔCAD are right angled triangles.
Now, from the right angled triangle ΔABC,

From ΔCBD,
is same as
.
So, 

Now, from ΔCAD,
is same as 
So, 

Hence, the unknown angles of both the triangles are:
