Answer:
The displacement is 386.16m
Explanation:
A seal dives to a depth of 248m. To find displacement, we must calculate the resultant vectors which will give us the displacement
R= sqrt(vector1+vector2)
Since this is a right angle triangle
R= sqrt(248^2 + 296^2)
R= sqrt(149120)
R= 386.16m
Displacement = 386.16m
By dropping a ball and seeing how long it takes to hit the ground or throw a ball up and time it as well
Explanation:
It is given that,
A mass oscillates up and down on a vertical spring with an amplitude of 3 cm and a period of 2 s. It is a case of simple harmonic motion. If the amplitude of a wave is T seconds, then the distance cover by that object is 4 times the amplitude.
In 2 seconds, distance covered by the mass is 12 cm.
In 1 seconds, distance covered by the mass is 6 cm
So, in 16 seconds, distance covered by the mass is 96 cm
So, the distance covered by the mass in 16 seconds is 96 cm. Hence, this is the required solution.
Explanation:
(a)
Critical angle is the angle at the angle of refraction is 90°. After the critical angle, no refraction takes place.
Using Snell's law as:
Where,
is the angle of incidence
is the angle of refraction = 90°
is the refractive index of the refraction medium
is the refractive index of the incidence medium
Thus,
The formula for the calculation of critical angle is:
Where,
is the critical angle
(b)
No it cannot occur. It only occur when the light ray bends away from the normal which means that when it travels from denser to rarer medium.
Answer:
360 ÷ 4 = 90
Example
A 360° circle is cut into 4 peaces in the form of + or × . It's one side is called 90°