A
More concentrated means more collisions per unit volume, and as the volume stays the same and only concentration changes, the there are more collisions
Answer:
Explanation:
The moment of inertia is the integral of the product of the squared distance by the mass differential. Is the mass equivalent in the rotational motion
a) True. When the moment of inertia is increased, more force is needed to reach acceleration, so it is more difficult to change the angular velocity that depends proportionally on the acceleration
b) True. The moment of inertia is part of the kinetic energy, which is composed of a linear and an angular part. Therefore, when applying the energy conservation theorem, the potential energy is transformed into kinetic energy, the rotational part increases with the moment of inertia, so there is less energy left for the linear part and consequently it falls slower
c) True. The moment of inertial proportional to the angular acceleration, when the acceleration decreases as well. Therefore, a smaller force can achieve the value of acceleration and the change in angular velocity. Consequently, less force is needed is easier
Answer:
10.32874 m
Explanation:
= Atmospheric pressure = 101325 Pa
g = Acceleration due to gravity = 9.81 m/s²
h = Height of water
= Density of water = 1000 kg/m³
If the walls of the tube do not collapse that means that maximum pressure inside will be the atmospheric pressure
Atmospheric pressure is given by

The maximum height to which Superman can lift the water is 10.32874 m
On the Moon there is no atmosphere so no atmospheric pressure which means when the straw is placed in water water will not rise in the tube.
Answer:
Explanation:
Q1 = 35 nC = 35 x 10^-9 C
m = 3.5 micro gram = 3.5 x 10^-9 Kg
d = 35 cm = 0.35 m
(a) The electrostatic force between the two charges is balanced by the weight of another charge.
F = m g


(b) By substituting the values

Q2 = 13.34 x 10^-12 C
Q2 = 0.0134 nC
Acceleration = (change in speed) / (time for the change)
-- You said that the airplane has to speed up from zero ("sitting") to 40 m/s, so the change in speed is 40 m/s.
-- You said that it has to roll for 10 seconds to build up enough speed to take off, so the time for the change is 10 s .
Acceleration = (40 m/s) / (10 s)
Acceleration = (40/10) (m/s)/s
<em>Acceleration = 4 m/s²</em>
That seems like no problem. It's only like about 41% of 1 G . That would not even spill the drinks in First Class, or wake up the passengers who are already asleep (like me).