Answer:
Fc=5253
N
Explanation:
Answer:
Fc=5253
N
Explanation:
sequel to the question given, this question would have taken precedence:
"The 86.0 kg pilot does not want the centripetal acceleration to exceed 6.23 times free-fall acceleration. a) Find the minimum radius of the plane’s path. Answer in units of m."
so we derive centripetal acceleration first
ac (centripetal acceleration) = v^2/r
make r the subject of the equation
r= v^2/ac
ac is 6.23*g which is 9.81
v is 101m/s
substituing the parameters into the equation, to get the radius
(101^2)/(6.23*9.81) = 167m
Now for part
( b) there are two forces namely, the centripetal and the weight of the pilot, but the seat is exerting the same force back due to newtons third law.
he net force that maintains circular motion exerted on the pilot by the seat belts, the friction against the seat, and so forth is the centripetal force.
Fc (Centripetal Force) = m*v^2/r
So (86kg* 101^2)/(167) =
Fc=5253
N
Answer:
50 meters
Explanation:
Let's start by converting to m/s. There are 3600 seconds in an hour and 1000 meters in a kilometer, meaning that 72km/h is 20m/s.

Since the car starts at rest, you can write the following equation:

Now that you have the acceleration, you can do this:

Once again, there is no initial velocity:

Hope this helps!
Tension in the rope due to applied force will be given as

angle of applied force with horizontal is 37 degree
displacement along the floor = 6.1 m
so here we can use the formula of work done

now we can plug in all values above


So here work done to pull is given by 691.8 J
The oxygen has more electronegativity (3.44), making hydrogen more 'positive'. Hydrogen will be attracted to Cl since it is more 'negative'. Electronegativity(EN) of H is 2.2 whereas Cl has EN of 3.16