Q. The energy emitted from the sun is a product of ________.
A. Fusion
P=change in E/t
Change in E=p*t
=15*3
=45
The answer is 45J.
<span>
The needle of a compass will always lies along the magnetic
field lines of the earth.
A magnetic declination at a point on the earth’s surface
equal to zero implies that
the horizontal component of the earth’s magnetic field line
at that specific point lies along
the line of the north-south magnetic poles. </span>
The presence of a
current-carrying wire creates an additional <span>
magnetic field that combines with the earth’s magnetic field.
Since magnetic
<span>fields are vector quantities, therefore the magnetic field of
the earth and the magnetic field of the vertical wire must be
combined vectorially. </span></span>
<span>
Where:</span>
B1 = magnetic field of
the earth along the x-axis = 0.45 × 10 ⁻ ⁴ T
B2 = magnetic field due to
the straight vertical wire along the y-axis
We can calculate for B2
using Amperes Law:
B2 = μ₀ i / [ 2 π R ]
B2 = [ 4π × 10 ⁻ ⁷ T • m / A ] ( 36 A ) / [ 2 π (0.21 m ) ] <span>
B2 = 5.97 × 10 ⁻ ⁵ T = 0.60 × 10 ⁻ ⁴ T </span>
The angle can be
calculated using tan function:<span>
tan θ = y / x = B₂ / B₁ = 0.60 × 10 ⁻ ⁴ T / 0.45 × 10 ⁻ ⁴ T <span>
tan θ = 1.326</span></span>
θ = 53°
<span>
<span>The compass needle points along the direction of 53° west of
north.</span></span>
Answer:
the energy required for the extension is 12.25 J
Explanation:
Given;
force constant of trampoline spring, k = 800 N/m
extension of trampoline spring, x = 17.5 cm = 0.175 m
The energy required for the extension is calculated as;
E = ¹/₂kx²
E = 0.5 x 800 x 0.175²
E = 12.25 J
Therefore, the energy required for the extension is 12.25 J
<span>In order for
an object to accelerate, a <u>force</u> must be applied. It follows Newton’s second
law of motion where it states that a body at rest remains at rest unless a
force is acted upon it. When you move an object, you are exerting a force onto
it. By exerting a force on the object, you are actually displacing it from its
initial position. You cannot apply force to the object without altering its
position. Keep in mind that when you exert work, you are exerting energy too. </span>