There are 42 kids in one classroom. They are all divided into 3 groups. How many kids will be in each group?
Which data set has an outlier? 25, 36, 44, 51, 62, 77 3, 3, 3, 7, 9, 9, 10, 14 8, 17, 18, 20, 20, 21, 23, 26, 31, 39 63, 65, 66,
umka21 [38]
It's hard to tell where one set ends and the next starts. I think it's
A. 25, 36, 44, 51, 62, 77
B. 3, 3, 3, 7, 9, 9, 10, 14
C. 8, 17, 18, 20, 20, 21, 23, 26, 31, 39
D. 63, 65, 66, 69, 71, 78, 80, 81, 82, 82
Let's go through them.
A. 25, 36, 44, 51, 62, 77
That looks OK, standard deviation around 20, mean around 50, points with 2 standard deviations of the mean.
B. 3, 3, 3, 7, 9, 9, 10, 14
Average around 7, sigma around 4, within 2 sigma, seems ok.
C. 8, 17, 18, 20, 20, 21, 23, 26, 31, 39
Average around 20, sigma around 8, that 39 is hanging out there past two sigma. Let's reserve judgement and compare to the next one.
D. 63, 65, 66, 69, 71, 78, 80, 81, 82, 82
Average around 74, sigma 8, seems very tight.
I guess we conclude C has the outlier 39. That one doesn't seem like much of an outlier to me; I was looking for a lone point hanging out at five or six sigma.
Answer:
To calculate how many total miles Rachel runs per minute, setting up a unit rate, that is a rate with a denominator of 1, would be helpful.
Step-by-step explanation:
Use the current problem to determine a rate.
23 minutes/4 miles
Now, set up a unit rate.
1 minute/<em>x </em>miles = 23 minutes/4 miles
To solve for <em>x, </em>we can use simple division strategies. We divide 23 by 23 to receive 1 minute. Likewise, dividing the current milage by 23 would wield the correct unit rate. To do this, divide 4 by 23.
4/23 = 0.1739130434782609
Finally, simplify your answer to receive 0.17.
Therefore, Rachel runs ~0.17 miles per minute. (Note that this answer is only a rounded answer of her actual milage per minute)
Answer:

Step-by-step explanation:
The picture of the question in the attached figure
step 1
Let
r ---> the radius of the sector
s ---> the arc length of sector
Find the radius r
we know that



solve for r

step 2
Find the value of s

substitute the value of r

step 3
we know that
The area of complete circle is equal to

The complete circle subtends a central angle of 2π radians
so
using proportion find the area of the sector by a central angle of angle theta
Let
A ---> the area of sector with central angle theta

substitute the value of r


Convert to function notation
