A)
It is a launch oblique, therefore the initial velocity in the vertical direction is zero. Space Hourly Equation in vertical, we have:
Through Definition of Velocity, comes:

B)
Using the Velocity Hourly Equation in vertical direction, we have:
The angle of impact is given by:

If you notice any mistake in my english, please let me know, because i am not native.
I would choose the option B.
F = ma
a = 75 / 25 = 3 m/s^2
The Rorschach inkblots and the TAT (Thematic Appreciation Test) both rely on providing the subject with ambiguous visual stimuli and assessing the subject's state of mind using the subject's interpretation of the stimuli.
Both use cards, although not all of the cards are used in the TAT. Moreover, the TAT cards contain sketches, while the Rorschach inkblots contain patterns of ink.
Answer:
Explanation:
Based on the wave model of light, physicists predicted that increasing light amplitude would increase the kinetic energy of emitted photoelectrons, while increasing the frequency would increase measured current.
Contrary to the predictions, experiments showed that increasing the light frequency increased the kinetic energy of the photoelectrons, and increasing the light amplitude increased the current.
Based on these findings, Einstein proposed that light behaved like a stream of particles called photons with an energy of \text{E}=h\nuE=hνstart text, E, end text, equals, h, \nu.
The work function, \PhiΦ\Phi, is the minimum amount of energy required to induce photoemission of electrons from a metal surface, and the value of \PhiΦ\Phi depends on the metal.
The energy of the incident photon must be equal to the sum of the metal's work function and the photoelectron kinetic energy:
Answer:
1.125m/s^2
Explanation:
Since acceleration is defined as the rate of change in velocity with respect to time. Mathematically
v^2= u^2+2as
Where a,v,u and s are the acceleration, final velocity, initial velocity and distance respectively.
a = ?
u = 0m/s
v = 15m/s
s = 100m
Substituting the values into the formula above
v^2= u^2+2as
15^2=0^2+2×a×100
225= 0+200a
225= 200a
Divide both sides by 200
225/200 = 200a/200
a= 1.125m/s^2
Hence the acceleration of the car is 1.125m/s^2.
Note that the car accelerated uniformly from rest, that was why the initial velocity was 0m/s