Answer:
22.2 m/s
Explanation:
First, we need to convert km to m by multiplying by 1000. This means that the car traveled 320 000 meters.
Next, we convert hours to minutes by multiplying by 3600 (the number of seconds in an hour). This means that overall, the car traveled 320 000 m in 14 400 seconds.
The average speed can be found by using the equation
. After substitution, this gives the fraction
, which reduces to 22
m/s, or about 22.2 m/s.
Answer:
a= 92. 13 m/s²
Explanation:
Given that
Amplitude ,A= 0.165 m
The maximum speed ,V(max) = 3.9 m/s
We know that maximum velocity in the SHM given as
V(max) = ω A
ω=Angular speed
A=Amplitude

ω=23.63 rad/s
The maximum acceleration given as
a = ω² A
a= (23.63)² x 0.165 m/s²
a= 92. 13 m/s²
Therefore the maximum magnitude of the acceleration will be 92. 13 m/s².
Answer:
20 cm
Explanation:
Given that a ball is released from a vertical height of 20 cm. It rolls down a "perfectly frictionless" ramp and up a similar ramp. What vertical height on the second ramp will the ball reach before it starts to roll back down?
Since it is perfectly frictionless, the Kinetic energy in which the ball is rolling will be equal to the potential energy at the edge of the ramp.
Therefore, the ball will reach 20 cm before it starts to roll back down.
Answer:

Explanation:
Given



Required
Determine the impulse
The impulse is calculated as follows:

Substitute values for Force and Time


<em>Hence, the impulse experienced is 8.0Ns</em>