Answer:
displacement = 2 m west
Explanation:
The displacement of an object is a vector connecting the final point of the motion of the object to the initial point, and its magnitude is equal to the length of the vector. So the magnitude of the displacement is basically the distance (measured in a straight line) between the final point and the starting point.
In this problem, we have:
- initial position of the acorn: 0 m
- final position of the acorn: 2 m west
So, the displacement has a magnitude of
d = 2 m - 0 m = 2 m
And the direction is west, since the final position is west compared to the initial position.
Answer:
60 kWh
Explanation:
The computation of the annual energy consumption in KW-h is shown below:
As we know that
1 kw = 1000 w
So, for 1400 W it would be
= 1,400 ÷ 1,000
= 1.4 kW
Now the number of hours it used in a year
= 7 minutes × 365 days ÷ 60 minutes
= 42.58333 hours
So in one year it used
= 1.4 kW × 42.58333
= 59.61 kWh
= 60 kWh
Answer:
Explanation:
a. The amplitude is the measure of the height of the wave from the midline to the top of the wave or the midline to the bottom of the wave (called crests). The midline then divides the whole height in half. Thus, the amplitude of this wave is 9.0 cm.
b. Wavelength is measured from the highest point of one wave to the highest point of the next wave (or from the lowest point of one wave to the lowest point of the next wave, since they are the same). The wavelength of this wave then is 20.0 cm. or 
c. The period, or T, of a wave is found in the equation
were f is the frequency of the wave. We were given the frequency, so we plug that in and solve for T:
so
and
T = .0200 seconds to the correct number of sig fig's (50.0 has 3 sig fig's in it)
d. The speed of the wave is found in the equation
and since we already have the frequency and we solved for the wavelength already, filling in:
and
v = 50.0(20.0) so
v = 1.00 × 10³ m/s
And there you go!