Answer:
The number of turns in the secondary coil is 48.
(B) is correct option.
Explanation:
Given that,
Number of turns on primary coil= 1000
Primary voltage = 2500 V
Secondary voltage = 120 v
We need to calculate the turns in the secondary coil
Using relation between voltage and number of turns in primary and secondary coil

Put the value into the formula



Hence, The number of turns in the secondary coil is 48.
Answer: 1477.78 N
Explanation:
Let's assume that the cross sectional area of the smaller piston be A1
let's also assume the cross sectional area of the larger piston be A2
We assume the force applied to the smaller piston be F1
We also assume the force applied to the larger piston be F2
we then use the formula
F1/A1 = F2/A2
From our question,
The radius of the smaller piston is 5 cm = 0.05 m
The radius of the larger piston is 15 cm = 0.15 m
The force of the larger piston is 13300 N
The force of the smaller piston is unknown = F
A1 = πr² = 3.142 * 0.05² = 0.007855 m²
A2 = πr² = 3.142 * 0.15² = 0.070695 m²
F1/0.007855 = 13300/0.070695
F1 = (13300 * 0.007855) / 0.070695
F1 = 104.4715 / 0.070695
F1 = 1477.78 N
Thus, the force the compressed air must exert is 1477.78 N
Answer:
R = 9880 yd * 3 ft/yd / 5280 ft/mi = 5.61 mi
If you do it in steps
R = 9880 yd * 3 ft/yd = 29640 ft
R = 29640 ft / 5280 ft/mi = 5.61 mi
Complete Question
The complete question is shown on the first uploaded image
Answer:
The correct option is option 3
Explanation:
From the question we are told that
The diameter of solenoid 1 is 
The length of solenoid 1 is 
The number of turns of solenoid is 
The diameter of solenoid 2 is 
The length of solenoid 2 is 
The number of turns of solenoid 2 is 
Generally the magnetic in a solenoid is mathematically represented as

From this equation we see that


Here C stands for constant
=> 
=> 
=> 
=> 
=> 
=> 