It can be both flat or it can be when you have new eyeglasses on and you look down it makes you think the ground looks like that but its not
Answer:
The angle of the incline above horizontal is 17.81 degrees.
Explanation:
Given that,
Mass of the object, m = 4 kg
Acceleration of the object above the incline, 
We need to find the angle of the incline above horizontal. The net force acting on the object along the incline is given by :






So, the angle of the incline above horizontal is 17.81 degrees. Hence, this is the required solution.
Answer: Metallic bond
Metallic bond can be defined as a force of attraction that
exit between a metal atoms and the velency eletron. Also, this bond arise from
the electostatic force of attraction that between conduction electrons and
positively charged metal ions. Thus, the electron usually act as a glue by giving
the substance a definite structure.
-- Electrons are leptons. There are <em>three</em> electrons in each neutral Lithium atom.
The last two parts of the question are absurd.
-- Bonbons are candy, not atomic particles. A bonbon cannot fit into a Lithium atom.
-- A pentagon is a closed geometric figure that has five sides. Although you could, in principle, have a pentagon small enough to fit into a Lithium atom, you could never find a piece of paper small enough to draw it on.
Answer:
Option C. The force between them would be 4 times larger than with the
initial masses.
Explanation:
To know which option is correct, we shall determine the force of attraction between the two masses when their masses are doubled. This can be obtained as follow:
From:
F = GMₐM₆/ r²
Keeping G/r² constant, we have
F₁ = MₐM₆
Let the initial mass of both objects to be m
F₁ = MₐM₆
F₁ = m × m
F₁ = m²
Next, let the masses of both objects doubles i.e 2m
F₂ = MₐM₆
F₂ = 2m × 2m
F₂ = 4m²
Compare the initial and final force
Initial force (F₁) = m²
Final (F₂) = 4m²
F₂ / F₁ = 4m² / m²
F₂ / F₁ = 4
F₂ = 4F₁ = 4m²
From the above illustrations, we can see that when the mass of both objects doubles, the force between them would be 4 times larger than with the
initial masses.
Thus, option C gives the correct answer to the question.