The basic SI unit that has anything to do with electricity is the unit
of electric charge ... the Coulomb.
Every other unit connected with electricity is a combination of the
Coulomb and the other basic SI units ...kilogram for mass, the meter
for length, and the second for time.
The paragraph is going to be your responsibility but I can provide the pros and cons.
Advantages include the fact that Uranium is a plentiful resource, it is relatively clean, and it takes very little resources to make power.
However disadvantages include radioactive byproducts which need longtime storage. Uranium is also a nonrenewable resource, meaning it can run out. Additionally safety issues regarding melt downs are a major concern.
Answer:
<em>0.45 mm</em>
Explanation:
The complete question is
a certain fuse "blows" if the current in it exceeds 1.0 A, at which instant the fuse melts with a current density of 620 A/ cm^2. What is the diameter of the wire in the fuse?
A) 0.45 mm
B) 0.63 mm
C.) 0.68 mm
D) 0.91 mm
Current in the fuse is 1.0 A
Current density of the fuse when it melts is 620 A/cm^2
Area of the wire in the fuse = I/ρ
Where I is the current through the fuse
ρ is the current density of the fuse
Area = 1/620 = 1.613 x 10^-3 cm^2
We know that 10000 cm^2 = 1 m^2, therefore,
1.613 x 10^-3 cm^2 = 1.613 x 10^-7 m^2
Recall that this area of this wire is gotten as
A = 
where d is the diameter of the wire
1.613 x 10^-7 = 
6.448 x 10^-7 = 3.142 x 
=
d = 4.5 x 10^-4 m = <em>0.45 mm</em>
The electric field strength of a uniform electric field is constant throughout the field. A perfectly uniform electric field has no variations in the entire field and is unattainable in the real world. However, two parallel plates can generate a field that resembles a perfectly uniform field with slight variations near the edge of the plates. <span>Electric fields are represented by drawing field lines that represent the direction of the field, as well as the strength of the field. More field lines represents a higher field strength. In a non-uniform electric field, the field lines tend to be curved and are more concentrated near the charges. In a uniform electric field, since the field strength does not vary, the field lines are parallel to each other and equally spaced. Uniform fields are created by setting up a potential difference between two conducting plates placed at a certain distance from one another. The field is considered to be uniform at the center of the plates, but varies close to the edge of the plates. The strength of the field depends on the potential difference applied to the plates and the distance by which they are separated. A higher potential difference or voltage results in a stronger electric field. The greater the distance between the plates, the weaker the field becomes. The electric field is therefore calculated as a ratio of the voltage between the plates to the distance they are separated by.</span>