Answer:
<u />
General Formulas and Concepts:
<u>Calculus</u>
Limits
Limit Rule [Variable Direct Substitution]:

Special Limit Rule [L’Hopital’s Rule]:

Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Addition/Subtraction]:
![\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%20%2B%20g%28x%29%5D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%5D%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bg%28x%29%5D)
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]:
![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify given limit</em>.

<u>Step 2: Find Limit</u>
Let's start out by <em>directly</em> evaluating the limit:
- [Limit] Apply Limit Rule [Variable Direct Substitution]:

- Evaluate:

When we do evaluate the limit directly, we end up with an indeterminant form. We can now use L' Hopital's Rule to simply the limit:
- [Limit] Apply Limit Rule [L' Hopital's Rule]:

- [Limit] Differentiate [Derivative Rules and Properties]:

- [Limit] Apply Limit Rule [Variable Direct Substitution]:

- Evaluate:

∴ we have <em>evaluated</em> the given limit.
___
Learn more about limits: brainly.com/question/27807253
Learn more about Calculus: brainly.com/question/27805589
___
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits
Answer:
Change in percent = 56.75 (Approx.)
Step-by-step explanation:
Given:
Score in first game = 37 points
Score in second game = 58 points
Find:
Change in percent
Computation:
Change in percent = [(Score in second game - Score in first game)/Score in first game]100
Change in percent = [(58-37)/37]100
Change in percent = [(21)/37]100
Change in percent = 56.75 (Approx.)
There are 6! = 720 ways of arranging the lamps.
If the leftmost lamp is red, there are 3 choices of lamp in the leftmost position, and the remaining 5 can be placed in any order, so there are 3×5! = 360 ways of arranging the lamps and the leftmost is red.
Hence there is a 360/720 = 1/2 probability that the leftmost lamp is red.
Ignoring lamp color for the moment, the probability of arranging 3 lit lamps and 3 unlit lamps is the same, 1/2.
Since Ryan arranges the lamps randomly by color, then turns 3 of them on randomly, the two events are independent. So
P(leftmost red AND leftmost lit) = P(red) × P(lit) = 1/2² = 1/4
Let with X is denoted the length of the third side.
For a triangle the following statements must be true:
The sum<span> of the </span>lengths<span> of any two sides of a </span>triangle<span> is greater than the </span>length<span> of the third side.
This means that this inequality can be written: X<10+18 ,X<28
</span>
5 and 1 are the common factor between them