Answer:
d. 20
Step-by-step explanation:
The given question implies 5 permutation 2, i.e 
.
But,

= 
So that for 
, n = 5 and r = 2.

= 
= 
= 
Cancel out 3 and 2 with respect to the numerator and denominator.

= 5 * 4
= 20
Therefore,

= 20
So that the correct option is D.
Answer:
f⁻¹(x) = x - 3
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Algebra I</u>
- Functions
- Function Notation
- Inverse Functions
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
f(x) = x + 3
<u>Step 2: Find</u>
- Swap: x = y + 3
- [Subtraction Property of Equality] Isolate <em>y</em>: x - 3 = y
- Rewrite: f⁻¹(x) = x - 3

- Given - <u>A </u><u>trapezium</u><u> </u><u>ABCD </u><u>with </u><u>non </u><u>parallel </u><u>sides </u><u>of </u><u>measure </u><u>1</u><u>5</u><u> </u><u>cm </u><u>each </u><u>!</u><u> </u><u>along </u><u>,</u><u> </u><u>the </u><u>parallel </u><u>sides </u><u>are </u><u>of </u><u>measure </u><u>1</u><u>3</u><u> </u><u>cm </u><u>and </u><u>2</u><u>5</u><u> </u><u>cm</u>
- To find - <u>Area </u><u>of </u><u>trapezium</u>
Refer the figure attached ~
In the given figure ,
AB = 25 cm
BC = AD = 15 cm
CD = 13 cm
<u>Construction</u><u> </u><u>-</u>

Now , we can clearly see that AECD is a parallelogram !
AE = CD = 13 cm
Now ,

Now , In ∆ BCE ,

Now , by Heron's formula

Also ,

<u>Since </u><u>we've </u><u>obtained </u><u>the </u><u>height </u><u>now </u><u>,</u><u> </u><u>we </u><u>can </u><u>easily </u><u>find </u><u>out </u><u>the </u><u>area </u><u>of </u><u>trapezium </u><u>!</u>

hope helpful :D
Answer:
The question is incomplete, the complete question is "Changing Bases to Evaluate Logarithms in Exercise, use the change-of-base formula and a calculator to evaluate the logarithm. See Example 9.
.

Step-by-step explanation:
From the general properties or laws of logarithm, we have the

where both log are now express in the natural logarithm base.
i.e 
hence we can express our
.
the value of ln7 is 1.9459 and ln4 is 1.3863
Hence
.
