Answer:
- 10.555 kJ/mol.
Explanation:
∵ ∆G°rxn = ∆H°rxn - T∆S°rxn.
Where, ∆G°rxn is the standard free energy change of the reaction (J/mol).
∆H°rxn is the standard enthalpy change of the reaction (J/mol).
T is the temperature of the reaction (K).
∆S°rxn is the standard entorpy change of the reaction (J/mol.K).
∵ ∆H°rxn = ∑∆H°products - ∑∆H°reactants
<em>∴ ∆H°rxn = (2 x ∆H°f NOCl) - (1 x ∆H°f Cl₂) - (2 x ∆H°f NO) </em>= (2 x 51.71 kJ/mol) - (1 x 0) - (2 x 90.29 kJ/mol) = - 77.16 kJ/mol.
∵ ∆S°rxn = ∑∆S°products - ∑∆S°reactants
<em>∴ ∆S°rxn = (2 x ∆S° NOCl) - (1 x ∆S° Cl₂) - (2 x ∆S° NO) </em>= (2 x 261.6 J/mol.K) - (1 x 223.0 J/mol.K) - (2 x 210.65 J/mol.K) =<em> - 121.1 J/mol.K. = - 0.1211 kJ/mol.K.</em>
<em></em>
∵ ∆G°rxn = ∆H°rxn - T∆S°rxn.
<em>∴ ∆G°rxn = ∆H°rxn - T∆S°rxn </em>= (- 77.16 kJ/mol) - (550 K)(- 0.1211 kJ/mol.K) = <em>- 10.555 kJ/mol.</em>
Answer:
b is the anwer
Explanation:
the option is the explanation
Answer:
The acid will be neutralized overtime
Explanation:
The presence of the pyrites leads to the leaching of large amounts of sulphuric acid, however the basic carbonates neutralizes the acid according to the reaction equation;
CaCO3 + H2SO4 ---> CaSO4 + CO2 + H2O.
This will prevent all the deleterious consequences associated with the leaching of the acid in the abandoned coal mine.
The specific heat of water is higher than the specific heat of concrete.
Answer: D. 19.9 g hydrogen remains.
Explanation:
To calculate the moles, we use the equation:
a) moles of
b) moles of
According to stoichiometry :
1 mole of
require 1 mole of
Thus 0.0787 moles of
require=
of
Thus
is the limiting reagent as it limits the formation of product and
acts as the excess reagent. (10.0-0.0787)= 9.92 moles of
are left unreacted.
Mass of
Thus 19.9 g of
remains unreacted.