Answer:
<h2>d = -4</h2>
Step-by-step explanation:
20 = -d + 16 <em>subtract 16 from both sides</em>
20 - 16 = -d + 16 - 16
4 = -d <em>change the signs</em>
-4 = d ⇒ d = -4
Answer:
The average value of
over the interval
is
.
Step-by-step explanation:
Let suppose that function
is continuous and integrable in the given intervals, by integral definition of average we have that:
(1)
(2)
By Fundamental Theorems of Calculus we expand both expressions:
(1b)
(2b)
We obtain the average value of
over the interval
by algebraic handling:
![F(5) - F(3) +[F(3)-F(-2)] = 40 + (-30)](https://tex.z-dn.net/?f=F%285%29%20-%20F%283%29%20%2B%5BF%283%29-F%28-2%29%5D%20%3D%2040%20%2B%20%28-30%29)



The average value of
over the interval
is
.
At at least one die come up a 3?We can do this two ways:) The straightforward way is as follows. To get at least one 3, would be consistent with the following three mutually exclusive outcomes:the 1st die is a 3 and the 2nd is not: prob = (1/6)x(5/6)=5/36the 1st die is not a 3 and the 2nd is: prob = (5/6)x((1/6)=5/36both the 1st and 2nd come up 3: prob = (1/6)x(1/6)=1/36sum of the above three cases is prob for at least one 3, p = 11/36ii) A faster way is as follows: prob at least one 3 = 1 - (prob no 3's)The probability to get no 3's is (5/6)x(5/6) = 25/36.So the probability to get at least one 3 is, p = 1 - (25/36) = 11/362) What is the probability that a card drawn at random from an ordinary 52 deck of playing cards is a queen or a heart?There are 4 queens and 13 hearts, so the probability to draw a queen is4/52 and the probability to draw a heart is 13/52. But the probability to draw a queen or a heart is NOT the sum 4/52 + 13/52. This is because drawing a queen and drawing a heart are not mutually exclusive outcomes - the queen of hearts can meet both criteria! The number of cards which meet the criteria of being either a queen or a heart is only 16 - the 4 queens and the 12 remaining hearts which are not a queen. So the probability to draw a queen or a heart is 16/52 = 4/13.3) Five coins are tossed. What is the probability that the number of heads exceeds the number of tails?We can divide
Answer:
-3x^4 + 5x^3 - 33x^2 + 25x - 3
//Hope it helps and it's right.
Answer:
x ≈ 28.8°
Step-by-step explanation:
Using the sine ratio in the right triangle
sin x =
=
=
, then
x =
(
) ≈ 28.8° ( to the nearest tenth )