Ok, so:
For Part A, we have: P(Z|A)=P(Z and A)/P(A)
And if we replace, we got:
P(Z|A) = (0.15)/(0.25) and this is equal to 0.6.
For Part B, we have: P(A|Z)=P(Z and A)/P(Z)
P(A|Z) = (0.15)/(0.73) and this is equal to 0.205.
Answer:
x=5/16
Step-by-step explanation:
Let's solve your equation step-by-step.
4x(−4)=−2−(−3)−6
Step 1: Simplify both sides of the equation.
4x(−4)=−2−(−3)−6
−16x=−2+3+−6
−16x=(−2+3+−6)(Combine Like Terms)
−16x=−5
−16x=−5
Step 2: Divide both sides by -16.
−16x
−16
=−5/−16
x=5/16
can I be the brainiest please!!
Answer:
x = -5
Step-by-step explanation:
Since these two triangles are similar, the ratio between the corresponding lengths of each triangle will be the same.
This means the ratio between one side of each triangle (e.g. AD and DC) will be the same as the ratio between a different side of each triangle (e.g. BE and BC).
So, to create an equation for the sides which contain the unknown 'x', we must first find the ratio between the two sides by using a different set of sides.
On the right side we are given 9 for AD, and 18 for DC.
9/18 = 0.5
This means that the extra length of the larger triangle from the smaller one (AD) is half the length of the smaller triangle (DC). We can use this to make an equation for x:
If AD/DC = 0.5, then BE/EC will also = 0.5
BE = x+23
EC = x+41
Therefore:

Now we can solve by multiplying both sides by x+41 to eliminate the fraction:

Now we multiply out the brackets and move the terms to different sides:



And if we substitute the -5 into the equations:
-5+23 = 18
-5 + 41 = 36
We will see that -5 does indeed give us the same ratio between the lengths:
18/36 = 0.5
Hope this helped!
Answer:
The students can group themselves in 360360 ways
Step-by-step explanation:
For this exercise we need to use the following equation:

This equation give us the number of assignation of n elements in k cell, where n1, n2, ..nk are the element that are in every cell
In this case we have 15 student that need to be assign in three vehicles with an specific capacity. This vehicles would be the equivalent to cells, so we can write the equation as:

Because the first vehicle have 7 seating, the second vehicle have 5 seating and the third vehicle have 3 seating.
Solving the equation we get 360360 ways to organized 15 students in three vehicles with capacity of 7, 5 and 3 seating.