D. With the same number of protons and different number of neutrons.
Answer:
0.846 moles.
Explanation:
- This is a stichiometric problem.
- The balanced equation of complete combustion of butane is:
C₄H₁₀ + 6.5 O₂ → 4 CO₂ + 5 H₂O
- It is clear from the stichiometry of the balanced equation that complete combustion of 1.0 mole of butane needs 6.5 moles of O₂ to produce 4 moles of CO₂ and 5 moles of H₂O.
<u><em>Using cross multiplication:</em></u>
- 1.0 mole of C₄H₁₀ reacts with → 6.5 moles of O₂
- ??? moles of C₄H₁₀ are needed to react with → 5.5 moles of O₂
- The number of moles of C₄H₁₀ that are needed to react with 5.5 moles of O₂ = (1.0 x 5.5 moles of O₂) / (6.5 moles of O₂) = 0.846 moles.
Answer:
The relative mass of electron is 0.0005
Explanation:
Atoms are the fundamental unit of matter. Every thing in the universe that occupy space and have mass is called matter. we can say that every matter is composed of atoms. while the atom is composed of subatomic particles called electron proton and neutron.
Subatomic particles Relative charge Relative mass
Proton +1 1
Neutron 0 1
Electron -1 0.0005
Electron:
The electron is subatomic particle that revolve around outside the nucleus and has negligible mass. It has a negative charge.
Symbol = e⁻
Mass= 9.10938356×10⁻³¹ Kg
electrical charge on electron= -1.6022 × 10⁻¹⁹ C
It was discovered by j. j. Thomson in 1897 during the study of cathode ray properties.
Proton and Neutron:
An atom consist of positively charged central core (nucleus) that is made up of Proton and neutron. Proton has positive charge while neutron is electrically neutral. Proton is discovered by Rutherford while neutron is discovered by James Chadwick in 1932.
Symbol of proton= P⁺
electrical charge on proton= +1.6022 × 10⁻¹⁹ C
Mass of proton=1.672623×10⁻²⁷ Kg
Symbol of neutron= n⁰
Mass of neutron=1.674929×10⁻²⁷ Kg
electrical charge on neutron= 0
The purpose of the uninoculated control tubes used in this test is that two uninoculated control tubes are needed to show the results of the medium in both aerobic and anaerobic environments. It is used to show it is sterile and also as a color comparison, used also to show that the medium remains green under both conditions.
Subtracting the mass of (flask+water) from the empty flask gives:
95.023 g - 85.135 g = 9.888 grams of water
Dividing this by the given volume of 10.00 mL water gives:
9.888 grams of water / 10.00 mL of water = 0.9888 g/mL of water
Therefore, based on this sample, the density of water is 0.9888 g/mL, which is close to the usually accepted approximation of 1 g/mL.