135.1kPa
Explanation:
Given parameters:
T1 = 27°C
P1 = 101.325 kPa
T2 = 127°C
Unknown:
P2 = ?
Solution:
Using a derivative of the combined gas law where we assume that the gas has a constant volume, we can solve for the unknown.
At constant volume:

P1 is the initial pressure
T1 is the initial temperature
P2 is the final pressure
T2 is the final temperature
Take the given temperature to K
T1 = 27 + 273 = 300K
T2 = 127 + 273 = 400K
Input the variables:

P2 = 135.1kPa
learn more:
Boyle's law brainly.com/question/8928288
#learnwithBrainly
Answer: Mutations can cause instant adaptations, while natural selection is the process by which adaptations occurs over a series of generations. Adaptations are changes or processes of changes by which an organism or species becomes better suited for its environment. A mutation is an alteration of the DNA sequence.
<h3>
Answer:</h3>
0.89 J/g°C
<h3>
Explanation:</h3>
Concept tested: Quantity of heat
We are given;
- Mass of the aluminium sample is 120 g
- Quantity of heat absorbed by aluminium sample is 9612 g
- Change in temperature, ΔT = 115°C - 25°C
= 90°C
We are required to calculate the specific heat capacity;
- We need to know that the quantity of heat absorbed is calculated by the product of mass, specific heat capacity and change in temperature.
That is;
Q = m × c × ΔT
- Therefore, rearranging the formula we can calculate the specific heat capacity of Aluminium.
Specific heat capacity, c = Q ÷ mΔT
= 9612 J ÷ (120 g × 90°C)
= 0.89 J/g°C
Therefore, the specific heat capacity of Aluminium is 0.89 J/g°C