Answer:
your mom
Step-by-step explanation:
haha
Answer:
d = 9.4
Step-by-step explanation:
d=
d=
d=
d=
d=9.4
Answer:
⣠⣴⣶⣿⠿⢿⣶⣶⣦⣄⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⣼⡿⠋⠁⠀⠀⠀⢀⣈⠙⢿⣷⡄⠀⠀ ⠀⠀⠀⠀⢸⣿⠁⠀⢀⣴⣿⠿⠿⠿⠿⠿⢿⣷⣄⠀ ⠀⢀⣀⣠⣾⣿⡇⠀⣾⣿⡄⠀⠀⠀⠀⠀⠀⠀⠹⣧ ⣾⡿⠉⠉⣿⠀⡇⠀⠸⣿⡌⠓⠶⠤⣤⡤⠶⢚⣻⡟ . ⣿⣧⠖⠒⣿⡄⡇⠀⠀⠙⢿⣷⣶⣶⣶⣶⣶⢿⣿⠀ . ⣿⡇⠀⠀⣿⡇⢰⠀⠀⠀⠀⠈⠉⠉⠉⠁⠀⠀⣿⠀. ⣿⡇⠀⠀⣿⡇⠈⡄⠀⠀⠀⠀⠀⠀⠀⠀⢀⣿⣿⠀ ⣿⣷⠀⠀⣿⡇⠀⠘⠦⣄⣀⣀⣀⣀⣀⡤⠊⠀⣿⠀ ⢿⣿⣤⣀⣿⡇⠀⠀⠀⢀⣀⣉⡉⠁⣀⡀⠀⣾⡟⠀ ⠀⠉⠛⠛⣿⡇⠀⠀⠀⠀⣿⡟⣿⡟⠋⠀ * ° * • ☆ ° .°• * ✯ ☄ ☆ ★ * ° * °· * . • ° ★ • ☄ ☄ ▁▂▃▄▅▆▇▇▆▅▄▃▁
⣠⣴⣶⣿⠿⢿⣶⣶⣦⣄⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⣼⡿⠋⠁⠀⠀⠀⢀⣈⠙⢿⣷⡄⠀⠀ ⠀⠀⠀⠀⢸⣿⠁⠀⢀⣴⣿⠿⠿⠿⠿⠿⢿⣷⣄⠀ ⠀⢀⣀⣠⣾⣿⡇⠀⣾⣿⡄⠀⠀⠀⠀⠀⠀⠀⠹⣧ ⣾⡿⠉⠉⣿⠀⡇⠀⠸⣿⡌⠓⠶⠤⣤⡤⠶⢚⣻⡟ . ⣿⣧⠖⠒⣿⡄⡇⠀⠀⠙⢿⣷⣶⣶⣶⣶⣶⢿⣿⠀ . ⣿⡇⠀⠀⣿⡇⢰⠀⠀⠀⠀⠈⠉⠉⠉⠁⠀⠀⣿⠀. ⣿⡇⠀⠀⣿⡇⠈⡄⠀⠀⠀⠀⠀⠀⠀⠀⢀⣿⣿⠀ ⣿⣷⠀⠀⣿⡇⠀⠘⠦⣄⣀⣀⣀⣀⣀⡤⠊⠀⣿⠀ ⢿⣿⣤⣀⣿⡇⠀⠀⠀⢀⣀⣉⡉⠁⣀⡀⠀⣾⡟⠀ ⠀⠉⠛⠛⣿⡇⠀⠀⠀⠀⣿⡟⣿⡟⠋⠀ * ° * • ☆ ° .°• * ✯ ☄ ☆ ★ * ° * °· * . • ° ★ • ☄ ☄ ▁▂▃▄▅▆▇▇▆▅▄▃▁
Answer:
I need to see the graph in order to answer the question
Step-by-step explanation:
Answer:

Step-by-step explanation:
Recall the formula for the sine of the double angle:

we know that
, and that
is in the interval between 0 and 90 degrees, where both the functions sine and cosine are non-negative numbers. Based on such, we can find using the Pythagorean trigonometric property that relates sine and cosine of the same angle, what
is:

With this information, we can now complete the value of the sine of the double angle requested:
