1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pavel [41]
2 years ago
15

Let f(x)=6/5x−1/2. Describe the transformations from the graph of f to the graphs of g(x)=−f(x) and h(x)=f(−x).

Mathematics
1 answer:
aivan3 [116]2 years ago
8 0

Answer:

g(x)=-6/5x+1/2

h(x)=-6/5x-1/2

Step-by-step explanation:

1).   g(x)=−f(x) ?

f(x)=6/5x−1/2

g(x)=−(6/5x−1/2)

<u>g(x)=-6/5x+1/2</u>

2). h(x)=f(−x) ?

f(-x)=6/5(-x)−1/2

f(-x)=-6/5x-1/2

h(x)=-6/5x-1/2

You might be interested in
Hello friends jass manak ka kon fan ha​
Sedbober [7]

Answer:

HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Step-by-step explanation:

YEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEET

6 0
3 years ago
Please help me with the question below
nata0808 [166]

Answer:

4

Step-by-step explanation:

If Judge is x years old and Eden is 6 years older, then Eden is x + 6 years old.

The second part tells us that Eden will be twice as old as Judge in two years.

This means that in two years: (Eden's age) = 2 * (Judge's age).

Since we know that Eden's age can be represented as x + 6 and Judge's age can be represented as x, we can write this: x + 6 = 2 * x

Simplify the equation:

x + 6 = 2x

6 = x = Judge's age (in two years)

If Judge is 6 two years later, then he must be 4 now.

To check our work, we can just look at the problem. Judge is 4 years old and Eden is 6 years older than Judge (that means Eden is 10 right now). Two years later, Eden is 12 and Judge is 6, so Eden is twice as old as Judge. The answer is correct.

6 0
3 years ago
Pls, help. ASAP. just think about the pts and brainliest
Alenkasestr [34]

Answer:8.9

Step-by-step explanation:

192/43 is about 4.46

4.46*2 is about 8.9

3 0
3 years ago
Read 2 more answers
A bag contains 5 yellow marbles, 7 pink marbles, and 3 purple marbles. Gordon selects a marble without looking.
prisoha [69]
1st you add up all the marbles so we got 15 so the answe will be out of 15 then next we add up nhe number of yellow and purple marbles 5+3= 8 so the answe will be 8/15
8 0
2 years ago
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
2 years ago
Other questions:
  • Explain the steps in calculating the mean absolute deviation of a set of data.
    11·2 answers
  • 26÷503 If you can please show your work
    10·1 answer
  • Solve the compound inequality. 4 x - 6 ≥ −10 or 3 x +5 ≤ −10
    14·1 answer
  • Shaw’s parking lot has spaces for 1,000 cars. 2 5 of the spaces are for compact cars. On Tuesday, there were 150 compact cars in
    11·1 answer
  • There are 50 students in the fifth grade one day 20% of them were absent how many fifth graders were in class that day
    13·1 answer
  • BRAINLIESTTT ASAP! PLEASE HELP ME :)
    15·1 answer
  • Part
    6·1 answer
  • PLEASE HELP!!! Find the component form of the vector that translates P(4,5) to P'(-1,-6)
    5·1 answer
  • Please someone help me please. give brainliest
    10·1 answer
  • Help please explain the answer
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!