1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
denis-greek [22]
2 years ago
15

The moon is 3x10^5 km away from Nepal and the mass of the moon is 7x10^22 kg. Calculate the force with which the Moon pulls ever

y kilogram of water in our rivers.
Physics
1 answer:
hammer [34]2 years ago
5 0

Answer:

Approximately 5.19 \times 10^{-5}\; \rm N.

Explanation:

Let G denote the gravitational constant. (G \approx 6.67 \times 10^{-11} \; \rm N \cdot kg^{-2} \cdot m^{2}.)

Let M and m denote the mass of two objects separated by r.

By Newton's Law of Universal Gravitation, the gravitational attraction between these two objects would measure:

\displaystyle F = \frac{G \cdot M \cdot m}{r^{2}}.

In this question: M = 7 \times 10^{22}\; \rm kg is the mass of the moon, while m = 1\; \rm kg is the mass of the water. The two are r = 3\times 10^{5}\; \rm km apart from one another.

Important: convert the unit of r to standard units (meters, not kilometers) to reflect the unit of the gravitational constant G.

\displaystyle r = 3 \times 10^{5}\; \rm km \times \frac{10^{3}\; \rm m}{1\; \rm km} = 3 \times 10^{8}\; \rm m.

\begin{aligned} F &= \frac{G \cdot M \cdot m}{r^{2}} \\ &= \frac{6.67 \times 10^{-11}\; \rm N \cdot kg^{-2}\cdot m^{2} \times 7 \times 10^{22}\; \rm kg \times 1\; \rm kg}{(3 \times 10^{8}\; \rm m)^{2}} \\ &\approx 5.19 \times 10^{-5} \; \rm N\end{aligned}.

You might be interested in
What is the energy per photon absorbed during the transition from n = 2 to n = 3 in the hydrogen atom?
adelina 88 [10]

Answer : The energy of one photon of hydrogen atom is, 3.03\times 10^{-19}J

Explanation :

First we have to calculate the wavelength of hydrogen atom.

Using Rydberg's Equation:

\frac{1}{\lambda}=R_H\left(\frac{1}{n_i^2}-\frac{1}{n_f^2} \right )

Where,

\lambda = Wavelength of radiation

R_H = Rydberg's Constant  = 10973731.6 m⁻¹

n_f = Higher energy level = 3

n_i= Lower energy level = 2

Putting the values, in above equation, we get:

\frac{1}{\lambda}=(10973731.6)\left(\frac{1}{2^2}-\frac{1}{3^2} \right )

\lambda=6.56\times 10^{-7}m

Now we have to calculate the energy.

E=\frac{hc}{\lambda}

where,

h = Planck's constant = 6.626\times 10^{-34}Js

c = speed of light = 3\times 10^8m/s

\lambda = wavelength = 6.56\times 10^{-7}m

Putting the values, in this formula, we get:

E=\frac{(6.626\times 10^{-34}Js)\times (3\times 10^8m/s)}{6.56\times 10^{-7}m}

E=3.03\times 10^{-19}J

Therefore, the energy of one photon of hydrogen atom is, 3.03\times 10^{-19}J

3 0
3 years ago
If you were to walk at a constant speed 20m/s for 30 seconds, how far would you walk?
lana [24]

Answer:

600m

Explanation:

30×20 at a constant speed is 600m.

6 0
3 years ago
A(n) 55.5 g ball is dropped from a height of 53.6 cm above a spring of negligible mass. The ball compresses the spring to a maxi
Serggg [28]

Answer:

The spring force constant is  k=243\ \frac{N}{m} .

Explanation:

We are told the mass of the ball is m=0.0555\ kg, the height above the spring where the ball is dropped is h=0.536\ m,  the length the ball compresses the spring is d=0.04897\ m and the acceleration of gravity is 9.8\ \frac{m}{s^{2}} .

We will consider the initial moment to be when the ball is dropped and the final moment to be when the ball stops, compressing the spring. We supose that there is no friction so the initial mechanical energy E_{mi} is equal to the final mechanical energy E_{mf} :

                                                    E_{mf}=E_{mi}

Initially there is only gravitational potential energy because the force of the spring isn't present and the speed is zero. In the final moment there is only elastic potential energy because the height is zero and the ball has stopped. So we have that:

                                                   \frac{1}{2}kd^{2}=mgh

If we manipulate the equation we have that:

                                                    k=\frac{2mgh}{d^{2} }

                                         k=\frac{2\ 0.0555\ kg\ 9.8\frac{m}{s^{2}}\ 0.536\ m}{(0.04897)^{2}m^{2}}

                                              k=\frac{0.58306\ \frac{kgm^{2}}{s^{2}}}{2.398x10^{-3}m^{2}}

                                                     k=243\ \frac{N}{m}

                                                   

                             

5 0
4 years ago
HELP! What are 5 changes that a fidget spinner can be?
noname [10]

Answer:

I would hope they can change this question

6 0
3 years ago
A 0.68 kg squirrel is resting on a branch 8 meters above the ground. What is the gravitational potential energy of a squirrel? A
ANEK [815]

Answer:

The gravitational potential energy of a squirrel is 53.312 J.

Explanation:

We have,

Mass of a squirrel is 0.68 kg

It is placed at a height of 8 m above the ground.

It is required to find the gravitational potential energy of a squirrel. It is possessed by an object due to its position. Its formula is given by :

E=mgh\\\\E=0.68\times 9.8\times 8\\\\E=53.312\ J

So, the gravitational potential energy of a squirrel is 53.312 J.

7 0
3 years ago
Other questions:
  • Most of the stars in the Milky Way will end their lives as
    5·2 answers
  • an ice cube placed in microwave melts in five minutes and it takes 3.50 kj of energy to melt it. what is the power of the microw
    14·1 answer
  • A car moves at speed v across a bridge made in the shape of a circular arc of radius r. (a) Find an expression for the normal fo
    6·1 answer
  • I’m a freshman, I got a 80% in the first quarter, 85% in the second and 70% in the third. I have a 46% in the fourth and 34 tota
    14·1 answer
  • A spring is characterized by a spring constant of 60 N/m. How much potential energy does it store, when stretched by 1.0 cm?
    8·2 answers
  • The greater the amplitude, the greater the wave's:
    9·1 answer
  • 5. What is the amplitude of the waves shown in the diagram below?
    10·1 answer
  • The product of voltage times amperage is what
    14·2 answers
  • Kinetic energy is the energy of an object in motion. Potential energy is the energy associated with an object
    11·1 answer
  • a tms (transcranial magnetic stimulation) device creates very rapidly changing magnetic fields. the field near a typical pulsed-
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!