Answer:
15.4 kg.
Explanation:
From the law of conservation of momentum,
Total momentum before collision = Total momentum after collision
mu+m'u' = V(m+m').................... Equation 1
Where m = mass of the first sphere, m' = mass of the second sphere, u = initial velocity of the first sphere, u' = initial velocity of the second sphere, V = common velocity of both sphere.
Given: m = 7.7 kg, u' = 0 m/s (at rest)
Let: u = x m/s, and V = 1/3x m/s
Substitute into equation 1
7.7(x)+m'(0) = 1/3x(7.7+m')
7.7x = 1/3x(7.7+m')
7.7 = 1/3(7.7+m')
23.1 = 7.7+m'
m' = 23.1-7.7
m' = 15.4 kg.
Hence the mass of the second sphere = 15.4 kg
Answer:
- 3 cm
Explanation:
From the mirror formula;
1/f = 1/v + 1/u ; where f is the focal length, v is the image distance, and u is the object distance.
1/-4.5 = 1/9 + 1/v
1/v = -1/4.5 - 1/9
= -1/3
Therefore;
v = -3 cm
Hence;
Image distance is - 3cm
Answer:
Approximately
.
Explanation:
The average speed of a vehicle is calculated as:
.
In this question, the total distance is
.
The unit of the speeds in this question is meters per second, while the unit of distance is kilometers. Convert the unit of distance to meters:
.
.
Time required for the first part of this trip:
.
Time required for the second part of this trip:
.
The time required for the entire trip would be approximately
.
Calculate the average speed of this plane:
.
Answer:
<h2>the ans...is dc circuit...</h2>
Answer:
Explanation:
The inertia of the ketchup will keep it from moving if it isn't too tightly adhered to the sides of the moving bottle.