Answer:
Explanation:
Near point = 56 cm .
near point of healthy person = 25 cm
person suffers from long sightedness
convex lens will be required .
object distance u = 25 cm
image distance v = 56 cm
both will be negative as both are in front of the lens.
lens formula
I/v - 1 / u = 1/f
- 1/56 +1/25 = 1/f
- .01785 + .04 = 1/f
1/f = .02215
f = 45.15 cm .
The energy conservation and trigonometry we can find the results for the questions about the movement of the acrobat are;
a) The maximum speed is v = 4.89 m / s
b) The maximum height is h = 1.22 m
The energy conservation is one of the most fundamental principles of physics, stable that if there are no friction forces the mechanistic energy remains constant. Mechanical energy is the sum of the kinetic energy plus the potential energies.
Em = K + U
Let's write the energy in two points.
Starting point. Highest part of the oscillation
Em₀ = U = m g h
Final point. Lower part of the movement
= K = ½ m v²
Energy is conserved.
Emo =
m g h = ½ m v²
v² = 2 gh
Let's use trigonometry to find the height, see attached.
h = L - L cos θ
h = L (1- cos θ)
They indicate that the initial angle is tea = 48º and the length is L = 3.7 m, let's calculate.
h = 3.7 (1- cos 48)
h = 1.22 m
this is the maximum height of the movement.
Let's calculate the velocity.
v = 4.89 m / s
In conclusion using the conservation of energy and trigonometry we can find the results for the questions about the movement of the acrobat are;
a) The maximum speed is v = 4.89 m / s
b) The maximum height is h = 1.22 m
Learn more here: brainly.com/question/13010190
Answer:
Increases
Explanation:
Since power P=IV
Then it means when current increases, the power increases hence brightness increases. I represent current, P is power and v is voltage.
Current of capacitor when in series connection is given by
![I=2\pi fCV](https://tex.z-dn.net/?f=I%3D2%5Cpi%20fCV)
where I is current across capacitor, f is frequency, C is capacitance and v is voltage across capacitance. From this second formula, it is evident that an increase in capacitance increases the current across the capacitor. Therefore, if current increases, power also increases leading to an increase in brightness
The breaking distance consists of two parts. The first part is the first 0.5 seconds were no breaking occurs. Given values: t time, v₀ initial velocity:
x₁ = v₀*t
The second part occurs after t = 0,5s with the given acceleration: a = - 12 m/s²
were the final velocity is zero, v = 0 and the initial velocity v₀= 16m/s:
v = a*t + v₀ = 0 => v₀ = -a*t => t = v₀/-a
x₂ = 0.5*a*t² = 0.5*v°²/a
The total breaking distance is the sum of the two parts:
x = x₁ + x₂ = v₀* t + 0.5 * v₀² / a = 16 * 0.5 + 0.5 * 16² / 12 = 8 + 10,7 = 18,7
You can use this result to calculate the remaining distance. You can use the last equation to calculate the maximum speed you could have to avoid a collision.
Use x = 39m and solve for v₀.
Answer:
λ = 0.4 x 10⁻⁶ m = 400 nm
Explanation:
The relationship between frequency, wavelength and speed of an electromagnetic wave is given as follows:
![c = f\lambda](https://tex.z-dn.net/?f=c%20%3D%20f%5Clambda)
where,
c = speed of light = 3 x 10⁸ m/s
f = frequency of the light wave = 7.5 x 10¹⁴ Hz
λ = wavelength of the light = ?
Therefore,
![3\ x\ 10^8\ m/s = (7.5\ x\ 10^{14}\ Hz)\lambda\\\\\lambda = \frac{3\ x\ 10^8\ m/s}{7.5\ x\ 10^{14}\ Hz}](https://tex.z-dn.net/?f=3%5C%20x%5C%2010%5E8%5C%20m%2Fs%20%3D%20%287.5%5C%20x%5C%2010%5E%7B14%7D%5C%20Hz%29%5Clambda%5C%5C%5C%5C%5Clambda%20%3D%20%5Cfrac%7B3%5C%20x%5C%2010%5E8%5C%20m%2Fs%7D%7B7.5%5C%20x%5C%2010%5E%7B14%7D%5C%20Hz%7D)
<u>λ = 0.4 x 10⁻⁶ m = 400 nm</u>