m = 43.2 kg
Explanation:
volume of sphere = (4/3)pi(r)^3
= (4/3)(3.14)(2 m)^3
= 33.5 m^3
density = mass/volume
or solving for mass m,
m = (density)×(volume)
= (1.29 kg/m^3)(33.5 m^3)
= 43.2 kg
Answer:
V is greater
Explanation:
because v intial at that time V final is the that speed which it is going at that time
Answer
(C).
When there is an angle between the two directions, the cosine of the angle must be considered.
Step by step Solution
The work done by a force is defined as the product of the force and the distance traveled in the direction of motion.
The first answer "Only the component of the force perpendicular to the motion is used to calculate the work" is wrong because, the force perpendicular to motion does no work.
The second choice "If the force acts in the same direction as the motion, then no work is done" is wrong because the work in the direction of the force is .
Fourth answer "A force at a right angle to the motion requires the use of the sine of the angle" is wrong because the meaning that there is no work done in the direction perpendicular to the motion.
The third answer" When there is an angle between the two directions, the cosine of the angle must be considered." is correct because the work is calculated using the force in the direction of the motion. The magnitude of this force is
Answer: B
Explanation:
It's not the time it took to heat the substance, so that rules out A and C.
This means that we only have to choose between
B. the area of contact
D. the area of the substances
(since everything else in each of those answers are the same)
Area of contact matters more (e.g. an object with greater surface area is exposed to the air more, will lose/gain heat quicker than an object with less surface area).