Solution :
x

45860 -1742.8571 3037551.0204
38860 -8742.8571 76437551.0204
64820 17217.1429 296430008.1633
63480 15877.1429 252083665.3061
36710 -10892.8571 118654336.7347
50410 2807.1429 7880051.0204
<u>33080 </u> <u> -14522.8571 </u> <u> 210913379.5918 </u>
333220 0.0000 965436542.8571
Sample size, n = 7
Mean = 
= 47602.8571
Variance = 
= 160906090
Standard deviation = 
= 12684.876
a). df = n - 1
= 7 - 1
= 6
Level of significance, α = 0.02
Critical, 
b). Sample mean, 
Sample standard deviation, s = 12684.876
Sample size, n = 7
c). 98% confidence interval = 

