Explanation:
In an elastic collision, two or more bodies are in contact with one another and there is no net loss of kinetic energy in the system. By the virtue of this, the bodies and objects do not stick together after they collide.
Both momentum and kinetic energy are conserved in an elastic collision. An example is when a football hits a wall.
For an inelastic collision, the bodies sticks together after they collide and there is a loss of kinetic energy after they collide. An example of this type of collision is when a gum is throw against a wall.
Answer:
(a) 3.807 s
(b) 145.581 m
Explanation:
Let Δt = t2 - t1 be the time it takes from the moment when the motorcycle starts to accelerate until it catches up with the car. We know that before the acceleration, both vehicles are travelling at a constant speed. So they would maintain a distance of 58 m prior to the acceleration.
The distance traveled by car after Δt (seconds) at
speed is

The distance traveled by the motorcycle after Δt (seconds) at
speed and acceleration of a = 8 m/s2 is


We know that the motorcycle catches up to the car after Δt, so it must have covered the distance that the car travels, plus their initial distance:





(b)


Answer:
2.25 m/s²
Explanation:
Acceleration = change in velocity / time taken
= (60-15)/20
= 2.25 m/s²
Given that,
Acceleration, a = 9.71 m/s²
Force, F = 5050 N
mass, m = ?
Since, we know that
F=ma
m= F/a
m= 5050/9.71
m= 520.08 kg
The mass of hi car is 520.08 kilograms.
Answer:
there is no drag in a vacuum (why is father in a vaccum)
Explanation:
there is nothing to hit and slow the object other than gravity like dust or air