Answer:
k+
Ba2+
Al3+
K+
S2-
you may think that if it has a + it would be bigger, but it is actually the opposite.
Suppose we have 100 gr of the substance. Then by weight, it would contain 44.77 gr of C, 7.46 gr of H and 47.76 gr of S. We need to look up the atomic weights of these atoms; M_H=1, M_C=12, M_S=32. The following formula holds (where n are the moles of the substance, M its molecular mass and m its mass): n=m/M. Substituting the known quantities for each element, we get that the substance has 3.73 moles of C, 7.46 moles of H and 1.49 moles of S. In the empirical formula for the molecule, all atoms appear an integer amout of times. Hence, for every mole of Sulfur, we have 2.5 moles of C and 5 moles of H (by taking the moles ratios). Thus, for every 2 moles of sulfur, we have 5 moles of C and 10 moles of H. Now that all the coefficients are integer, we have arrived at an empirical formula for the skunk spray agent:
Answer:
중요하지 않은 것들의 예로는 생각, 감정, 빛, 에너지가 있습니다. ... 에너지 : 빛, 열, 운동 및 위치 에너지, 소리는 질량이 없기 때문에 물질이 아닙니다. 사물
Explanation:
Energy: Light, heat, kinetic and potential energy, and sound are non-matter because they are massless. Objects that have mass and are matter may emit energy.
Answer : The enthalpy of the reaction is, -2552 kJ/mole
Explanation :
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
The given enthalpy of reaction is,

The intermediate balanced chemical reactions are:
(1)

(2)

(3)

(4)

Now we have to revere the reactions 1 and multiple by 2, revere the reactions 3, 4 and multiple by 2 and multiply the reaction 2 by 2 and then adding all the equations, we get :
(when we are reversing the reaction then the sign of the enthalpy change will be change.)
The expression for enthalpy of the reaction will be,



Therefore, the enthalpy of the reaction is, -2552 kJ/mole