Dark colored moths survived better in the Industrial Revolution because their dark color helped them camouflage in soot. When the industrial revolution ended there wasn't as much soot, so the light colored moths now had a better chance of survival.
The answer is 236.5 J/K
According to Δ G formula:
ΔG = ΔH - TΔS
when ΔG is the change in free energy (KJ)
and ΔH is the change in enthalpy (KJ)= ΔHvap * moles
= 71.8 KJ/mol * 1.11 mol
= 79.7 KJ
and T is the absolute temperature (K)= 64 °C + 273°C = 337 K
Δ S is the change in entropy KJ/K
by substitution:
when at equilibrium ΔG = 0
∴ΔS = ΔH / T
=79.7 KJ/ 337 K
= 0.2365 KJ/K
= 236.5 J/K
The answer to the question given above is letter A. Light
Light is considered a load of the parts of a circuit. <span>The load in a circuit can be
any electrical device that converts electrical energy into other usable forms
of energy such as a <span>light bulb.
>></span></span><span>Energy sources include
batteries and generating stations
>>switch-</span><span>is
used in electric circuits to allow the circuit to be turned on and off.</span>
Answer:
83.20 g of Na3PO4
Explanation:
1 mole of Na3PO4 contains 3 moles of Na+.
Mole of Na ion to be prepared = Molarity x volume
= 0.700 x 725/1000
= 0.5075 mole
If 1 mole of Na3PO4 contains 3 moles of Na ion, then 0.5075 Na ion will be contained in:
0.5075/3 x 1 = 0.1692 mole of Na3PO4
mole of Na3PO4 = mass/molar mass = 0.1692
Hence, mass of Na3PO4 = 0.1692 x molar mass
= 0.1692 x 163.94
= 83.20 g.
83.20 g of Na3PO4 will be needed.
The answer is Conduction. I hope this helps!