The kinetic energy before equals K after
Here we will the speed of seagull which is v = 9 m/s
this is the speed of seagull when there is no effect of wind on it
now in part a)
if effect of wind is in opposite direction then it travels 6 km in 20 min
so the average speed is given by the ratio of total distance and total time


now since effect of wind is in opposite direction then we can say



Part b)
now if bird travels in the same direction of wind then we will have


now we can find the time to go back



Part c)
Total time of round trip when wind is present


now when there is no wind total time is given by


So due to wind time will be more
Answer:
The answer is 12.67 TMU
Explanation:
Recall that,
worker’s eyes travel distance must be = 20 in.
The perpendicular distance from her eyes to the line of travel is =24 in
What is the MTM-1 normal time in TMUs that should be allowed for the eye travel element = ?
Now,
We solve for the given problem.
Eye travel is = 15.2 * T/D
=15.2 * 20 in/24 in
so,
= 12.67 TMU
Therefore, the MTM -1 of normal time that should be allowed for the eye travel element is = 12.67 TMU
Answer:
Copper
Explanation:
Capacitance is directly proportional to dielectric constant
Aluminium and zinc are highly reactive and have high dielectric contact.
Copper has less dielectric constant hence capacitance will decrease
Answer:
r1 = 5*10^10 m , r2 = 6*10^12 m
v1 = 9*10^4 m/s
From conservation of energy
K1 +U1 = K2 +U2
0.5mv1^2 - GMm/r1 = 0.5mv2^2 - GMm/r2
0.5v1^2 - GM/r1 = 0.5v2^2 - GM/r2
M is mass of sun = 1.98*10^30 kg
G = 6.67*10^-11 N.m^2/kg^2
0.5*(9*10^4)^2 - (6.67*10^-11*1.98*10^30/(5*10^10)) = 0.5v2^2 - (6.67*10^-11*1.98*10^30/(6*10^12))
v2 = 5.35*10^4 m/s