The empirical formula is the same as the molecular formula : C₁₀H₅O₂
<h3>Further explanation</h3>
Given
Molecular formula : C₁₀H₅O₂
Required
The empirical formula
Solution
The empirical formula (EF) is the smallest comparison of atoms of compound forming elements.
The molecular formula (MF) is a formula that shows the number of atomic elements that make up a compound.
(empirical formula) n = molecular formula
<em>(EF)n=MF
</em>
(EF)n = C₁₀H₅O₂
If we divide by the number of moles of Oxygen (the smallest) which is 2 then the moles of Hydrogen will be a decimal number (not whole), which is 2.5, then the empirical formula is the same as the molecular formula
Do you have any pictures of your options
Answer:
The solution is always homogeneous mixture and transparent through which the light can travel. The mixture of water and sugar is a solution because sugar is soluble in water and form homogeneous mixture while the sand can not dissolve in water and sand particles scatter the light.
Explanation:
Solution:
"The solution is always homogeneous mixture and transparent through which the light can travel"
The mixture of water and sugar is a solution because sugar is soluble in water and form homogeneous mixture. The solubility of sugar is high as compared to the sand in water because the negative and positive ends of sucrose easily dissolve into the polar solvent i.e, water
Suspension:
"Suspension is the heterogeneous mixture, in which the solute particles settle down but does not dissolve"
The mixture of water and sand is suspension. The sand can not dissolve in water because it is mostly consist of quartz. The nonpolar covalent bonds of sand are too strong and cannot be break by water molecules.
Answer:
well it depends of the distance, but u get your frequency and u times it by a round number if im correct
Explanation:
Answer:
2. Have the property of metals and non-metals
Explanation:
A metalloid is a substance that posseses the characteristics of both metals and non-metals. In other words, it can be said to be an intermediary between metals and nonmetals.
According to this question, a metalloid