If one starts with 0.020 g of Mg, 0.0008 moles of H2 would be made if the reaction is complete.
Going by the balanced equation of reaction in the image, 1 mole of Mg will produce 1 mole of H2 in a complete reaction.
If 0.020 g of Mg is started with:
mole of Mg = mass/molar mass
= 0.020/24.3
= 0.0008 moles
Since the mole of Mg to H2 is 1:1, thus, 0.0008 moles of H2 will also be made from the reaction.
More on stoichiometry can be found here: brainly.com/question/9743981
To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
<span>P2 = P1V1/V2</span>
<span>
</span>
<span>The correct answer is the first option. Pressure would increase. This can be seen from the equation above where V2 is indirectly proportional to P2.</span>
Answer:
The correct row is B.
Explanation:
The formation of the magnesium ion, Mg²⁺, comes from the removal of 2 electrons from the valence shell of the magnesium atom.<em> </em>Since the remotion is of electrons, the nucleus of the atom remains the same, so the number of protons and the number of neutrons does not change.<em> </em>
If the number of proton change, then the atom also change, since the identity of an atom is related to the atomic number which is the same to the proton number.
Now, if the number of neutrons changes, then we would be in the presence of an isotope of the magnesium atom.
Therefore, the correct row is B.
I hope it helps you!
Since the molecule contains Hydrogen and is covalently bonded, it contains dipole-dipole forces and hydrogen bonds.