Answer:
(a) 13.7 g.
(b) 28.91 g.
Explanation:
- molality (m) is the no. of moles of solute dissolved in 1.0 kg of solvent.
∴ m = (no. of moles of solute)/(mass of water (kg))
<em>∴ m = (mass/molar mass of solute)/(mass of water (kg)).</em>
<em />
<u><em>(a) Calculate the mass of CaCl₂·6H₂O needed to prepare 0.125 m CaCl₂(aq) by using 500. g of water.</em></u>
∵ m = (mass/molar mass of CaCl₂·6H₂O)/(mass of water (kg)).
m = 0.125 m, molar mass of CaCl₂·6H₂O = 219.0757 g/mol, mass of water = 500.0 g = 0.5 kg.
∴ 0.125 m = (mass of CaCl₂·6H₂O / 219.0757 g/mol)/(0.5 kg).
∴ mass of CaCl₂·6H₂O = (0.125 m)(219.0757 g/mol)(0.5 kg) = 13.7 g.
<u><em>(b) What mass of NiSO₄·6H₂O must be dissolved in 500. g of water to produce 0.22 m NiSO₄(aq)?</em></u>
∵ m = (mass/molar mass of NiSO₄·6H₂O)/(mass of water (kg)).
m = 0.22 m, molar mass of NiSO₄·6H₂O = 262.84 g/mol, mass of water = 500.0 g = 0.5 kg.
∴ 0.125 m = (mass of NiSO₄·6H₂O / 262.84 g/mol)/(0.5 kg).
∴ mass of NiSO₄·6H₂O = (0.22 m)(262.84 g/mol)(0.5 kg) = 28.91 g.
Answer:
The correct answer is c) 134L
Explanation:
We use the formula PV =nRT. The normal conditions of temperature and pressure are 273K and 1 atm, we use the gas constant = 0, 082 l atm / K mol.
1 atm x V = 5, 98 mol x 0, 082 l atm / K mol x 273 K
V = 5, 98 mol x 0, 082 l atm / K mol x 273 K / 1 atm
V = 133, 86828 l
The Answer is D. Suspending a heavy weight with a strong chain.
Answer:
Controlling the environment is the most key procedures for getting good results.
Explanation:
The control environment for an experiment is the essential part for getting good results. In control environment, there is no or less chances of disruption
from the external environment which can cause the results of the data more acceptable. So the scientists prefers laboratory for performing experiment as compared to outer environment. So in my opinion for getting better results, the control environment is the most necessary experimental procedure.