First of all we have to arrange the data in ascending order as shown below:
28, 40, 43, 43, 45, 50, 50
Total number of values = 7
Since the number of values is odd, the median will be the middle value i.e. 4th value which is 43. Median divides the data in two halves:
1st Half = 28, 40, 43
2nd Half = 45, 50, 50
Q1 or the First Quartile is the middle value of the lower or 1st half which is 40.
Q3 or the Third Quartile is the middle value of the upper or second half, which is 50.
IQR or the Inter Quartile Range is the difference of Q3 and Q1.
So, IQR= Q3 – Q1 = 50 – 40 = 10
Thus, IQR for the given data is 10
Answer:
Here we will use algebra to find three consecutive integers whose sum is 300. We start by assigning X to the first integer. Since they are consecutive, it means that the 2nd number will be X + 1 and the 3rd number will be X + 2 and they should all add up to 300. Therefore, you can write the equation as follows:
(X) + (X + 1) + (X + 2) = 300
To solve for X, you first add the integers together and the X variables together. Then you subtract three from each side, followed by dividing by 3 on each side. Here is the work to show our math:
X + X + 1 + X + 2 = 300
3X + 3 = 300
3X + 3 - 3 = 300 - 3
3X = 297
3X/3 = 297/3
X = 99
Which means that the first number is 99, the second number is 99 + 1 and the third number is 99 + 2. Therefore, three consecutive integers that add up to 300 are 99, 100, and 101.
99 + 100 + 101 = 300
We know our answer is correct because 99 + 100 + 101 equals 300 as displayed above.
Step-by-step explanation:
Answer:
Step-by-step explanation:
the answer is 45 sin
Problem
Solution
For this case we know that the vertex is given by (3,6) and the genera equation for a parabola is given by:
y= a(x-h)^2 +k
Where h = 3, k=6 and replacing we have:
y= a(x-3)^2 +6
And we can find the value of a with the point given x= 4, y=4
4= a(4-3)^2 +6
4= a +6
a= 4-6=-2
And the correct equation would be:
d. y= -2(x-3)^2 +6
Answer:
b: 5ft
Step-by-step explanation: