Answer:
315.51g/mol
Explanation:
137(33 + (16.00 + 1.01) 2 + 8 [1.01 (2) + 16.00] = 315.51g/mol
Answer:
Magnesium nucleus will attract the electrons more toward it and therefore, shrinking the size of the atom. Magnesium atom is smaller than Calcium atom because Calcium has more electron ( 20e− ) which will occupy more energy levels ( n=4 for Calcium versus n=3 for Magnesium)
<h3>
Answer:</h3>
733 g CO₂
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] 2C₃H₇OH + 9O₂ → 6CO₂ + 8H₂O
[Given] 5.55 mol C₃H₇OH
<u>Step 2: Identify Conversions</u>
[RxN] 2 mol C₃H₇OH → 6 CO₂
Molar Mass of C - 12.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of CO₂ - 12.01 + 2(16.00) = 44.01 g/mol
<u>Step 3: Stoichiometry</u>
- Set up conversion:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
732.767 g CO₂ ≈ 733 g CO₂
The reaction for magnesium iodide when put into water is as below
MgI2(s) → Mg^2+(aq) + 2I^-(aq)
when magnesium iodide but into water it dissociate/ ionize completely into Mg^2+ and 2l^- ions. Magnesium iodide dissociate/ionize completely because magnesium iodide is a strong electrolyte which dissociate/ ionize completely into their ions when it is put into water .
Answer:
Correct answer is: "Cold Water"
Explanation:
EDGE 2020