Daniddmelo says it right there, don't know why he got reported.
The potential energy (PE) is mass x height x gravity. So it would be 25 kg x 4 m x 9.8 = 980 joules. The child starts out with 980 joules of potential energy. The kinetic energy (KE) is (1/2) x mass x velocity squared. KE = (1/2) x 25 kg x 5 m/s2 = 312.5 joules. So he ends with 312.5 joules of kinetic energy. The Energy lost to friction = PE - KE. 980- 312.5 = 667.5 joules of energy lost to friction.
Please don't just copy and paste, and thank you Dan cause you practically did it I just... elaborated more? I dunno.
Answer:
4v/3
Explanation:
Assume elastic collision by the law of momentum conservation:

where v is the original speed of car 1, v1 is the final speed of car 1 and v2 is final speed of car 2. m1 and m2 are masses of car 1 and car 2, respectively
Substitute 

Divide both side by
, then multiply by 6 we have



So the final speed of the second car is 4/3 of the first car original speed
<span>At the periphery of a hurricane the air is sinking, and several kilometers above the surface, in the eye, the air is sinking. </span>
Answer:
c) 
Explanation:
Coulomb's law says that the force exerted between two charges is inversely proportional to the square of distance between them, and is given by the expression:

where k is a proportionality constant with the value 
In this case
, so we have:

Solving the equation for q, we have:



Replacing the given values:

