Answer: car B has travelled 4times as far as Car A
d=vi*t+1/2at^2
No initial velocity so equation becomes;
d=1/2at^2 and the acceleration is the same between both only time is different;
Car A d=1/2a(1)^2
Car B d=1/2a(2)^2
Car A d= 1^2=1
Car B d= 2^2=4
Car B d=4*Car A
So car B has travelled 4 times as far as car A
M = 30 g = 0.03 kg, the mass of the bullet
v = 500 m/s, the velocity of the bullet
By definition, the KE (kinetic energy) of the bullet is
KE = (1/2)*m*v²
= 0.5*(0.03 kg)*(500 m/s)² = 3750 J
Because the bullet comes to rest, the change in mechanical energy is 3750 J.
The work done by the wall to stop the bullet in 12 cm is
W = (1/2)*(F N)*(0.12 m) = 0.06F J
If energy losses in the form of heat or sound waves are ignored, then
W = KE.
That is,
0.06F = 3750
F = 62500 N = 62.5 kN
Answer:
(a) 3750 J
(b) 62.5 kN
Answer:
7.62
Explanation:
because you have to divide 32/4.2
and can you do a friend request so i can accept it
Answer:
I'm not sure
Explanation:
I have had that question to Uchida c r go crew in to go be