Answer:
Explanation:
To calculate pH you need to use Henderson-Hasselbalch formula:
pH = pka + log₁₀ ![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
Where HA is the acid concentration and A⁻ is the conjugate base concentration.
The equilibrium of acetic acid is:
CH₃COOH ⇄ CH₃COO⁻ + H⁺ pka: 4,75
Where <em>CH₃COOH </em>is the acid and <em>CH₃COO⁻ </em>is the conjugate base.
Thus, Henderson-Hasselbalch formula for acetic acid equilibrium is:
pH = 4,75 + log₁₀ ![\frac{[CH_{3}COO^-]}{[CH_{3}COOH]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCH_%7B3%7DCOO%5E-%5D%7D%7B%5BCH_%7B3%7DCOOH%5D%7D)
a) The pH is:
pH = 4,75 + log₁₀ ![\frac{[2 mol]}{[2 mol]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B2%20mol%5D%7D%7B%5B2%20mol%5D%7D)
<em>pH = 4,75</em>
<em></em>
b) The pH is:
pH = 4,75 + log₁₀ ![\frac{[2 mol]}{[1mol]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B2%20mol%5D%7D%7B%5B1mol%5D%7D)
<em>pH = 5,05</em>
<em></em>
I hope it helps!
We call these reactive elements, becausethese atoms really like to follow the buddysystem and form bonds with other atoms.Noble gases, however, don't have thisproblem. Their outer shells are filled to the max, so they don't need to bond or react with any other atoms.
Density= mass/volume aluminum can= 174 •g/ 4 • cm ^3. =2.76•g•cm ^-3
In a a cation-exchange resin, the outlet stream leaving the bed will contain
and
.
<h3>
What is cation-exchange resin?</h3>
- A resin or polymer that serves as a medium for ion exchange is known as an ion-exchange resin or cation-exchange resin.
- It is an insoluble matrix (or support structure) made from an organic polymer substrate, typically appearing as tiny (0.25-1.43 mm radius) microbeads that are white or yellowish in color.
- The process is known as cation-exchange resin because the beads are often porous, providing a wide surface area on and inside them where the trapping of ions takes place along with the concomitant release of other ions.
- cation-exchange resin comes in many different varieties. Polystyrene sulfonate is the main ingredient in most commercial resins. Many diverse separation, purification, and decontamination techniques use cation-exchange resin.
- The most typical examples are water filtration and water softening.
To learn more about cation-exchange resin with the given link
brainly.com/question/21052225
#SPJ4