Answer:
Kc = 4.774 * 10¹³
Explanation:
the desired reaction is
2 NO₂(g) ⇋ N₂(g) + 2 O₂(g)
Kc =[N₂]*[O₂]² /[NO₂]²
Since
1/2 N₂(g) + 1/2 O₂(g) ⇋ NO(g)
Kc₁= [NO]/(√[N₂]√[O₂]) → Kc₁²= [NO]²/([N₂][O₂])
and
2 NO₂(g) ⇋ 2 NO(g) + O₂(g)
Kc₂= [NO]²*[O₂]/[NO₂]² → 1/Kc₂= [NO₂]²/([NO]²[O₂])
then
Kc₁²* (1/Kc₂) = [NO]²/([N₂]*[O₂]) *[NO₂]²/([NO]²[O₂]) = [NO₂]²/([N₂]*[O₂]²) = 1/Kc
Kc₁² /Kc₂ = 1/Kc
Kc= Kc₂/Kc₁² =1.1*10⁻⁵/(4.8*10⁻¹⁰)² = 4.774 * 10¹³
Answer:
Adding a solution containing an anion that forms an insoluble salt with only one of the metal ions.
Explanation:
The student have in solution Ag⁺ and Cu²⁺ ions but he just want to analyze the silver, that means he need to separate ions.
Centrifuging the solution to isolate the heavier ions <em>FALSE </em>Centrifugation allows the separation of a suspension but Ag⁺ and Cu²⁺ are both soluble in water.
Adding enough base solution to bring the pH up to 7.0 <em>FALSE </em>At pH = 7,0 these ions are soluble in water and its separation will not be possible.
Adding a solution containing an anion that forms an insoluble salt with only one of the metal ions <em>TRUE </em>For example, the addition of Cl⁻ will precipitate the Ag⁺ as AgCl(s) allowing its separation.
Evaporating the solution to recover the dissolved nitrates. <em>FALSE</em> . Thus, you will obtain the nitrates of these ions but will be mixed doing impossible its separation.
I hope it helps!