19/45 is 0.42222222 if you round that to the nearest thousandth you get 0.422.
For this case we must solve each of the functions.
We have then:
f (x) = x2 - 9, and g (x) = x - 3
h (x) = (x2 - 9) / (x - 3)
h (x) = ((x-3) (x + 3)) / (x - 3)
h (x) = x + 3
f (x) = x2 - 4x + 3, and g (x) = x - 3
h (x) = (x2 - 4x + 3) / (x - 3)
h (x) = ((x-3) (x-1)) / (x - 3)
h (x) = x-1
f (x) = x2 + 4x - 5, and g (x) = x - 1
h (x) = (x2 + 4x - 5) / (x - 1)
h (x) = ((x + 5) (x-1)) / (x - 1)
h (x) = x + 5
f (x) = x2 - 16, and g (x) = x - 4
h (x) = (x2 - 16) / (x - 4)
h (x) = ((x-4) (x + 4)) / (x - 4)
h (x) = x + 4
Answer:
If k = −1 then the system has no solutions.
If k = 2 then the system has infinitely many solutions.
The system cannot have unique solution.
Step-by-step explanation:
We have the following system of equations

The augmented matrix is
![\left[\begin{array}{cccc}1&-2&3&2\\1&1&1&k\\2&-1&4&k^2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-2%263%262%5C%5C1%261%261%26k%5C%5C2%26-1%264%26k%5E2%5Cend%7Barray%7D%5Cright%5D)
The reduction of this matrix to row-echelon form is outlined below.

![\left[\begin{array}{cccc}1&-2&3&2\\0&3&-2&k-2\\2&-1&4&k^2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-2%263%262%5C%5C0%263%26-2%26k-2%5C%5C2%26-1%264%26k%5E2%5Cend%7Barray%7D%5Cright%5D)

![\left[\begin{array}{cccc}1&-2&3&2\\0&3&-2&k-2\\0&3&-2&k^2-4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-2%263%262%5C%5C0%263%26-2%26k-2%5C%5C0%263%26-2%26k%5E2-4%5Cend%7Barray%7D%5Cright%5D)

![\left[\begin{array}{cccc}1&-2&3&2\\0&3&-2&k-2\\0&0&0&k^2-k-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-2%263%262%5C%5C0%263%26-2%26k-2%5C%5C0%260%260%26k%5E2-k-2%5Cend%7Barray%7D%5Cright%5D)
The last row determines, if there are solutions or not. To be consistent, we must have k such that


Case k = −1:
![\left[\begin{array}{ccc|c}1&-2&3&2\\0&3&-2&-1-2\\0&0&0&(-1)^2-(-1)-2\end{array}\right] \rightarrow \left[\begin{array}{ccc|c}1&-2&3&2\\0&3&-2&-3\\0&0&0&-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%26-2%263%262%5C%5C0%263%26-2%26-1-2%5C%5C0%260%260%26%28-1%29%5E2-%28-1%29-2%5Cend%7Barray%7D%5Cright%5D%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%26-2%263%262%5C%5C0%263%26-2%26-3%5C%5C0%260%260%26-2%5Cend%7Barray%7D%5Cright%5D)
If k = −1 then the last equation becomes 0 = −2 which is impossible.Therefore, the system has no solutions.
Case k = 2:
![\left[\begin{array}{ccc|c}1&-2&3&2\\0&3&-2&2-2\\0&0&0&(2)^2-(2)-2\end{array}\right] \rightarrow \left[\begin{array}{ccc|c}1&-2&3&2\\0&3&-2&0\\0&0&0&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%26-2%263%262%5C%5C0%263%26-2%262-2%5C%5C0%260%260%26%282%29%5E2-%282%29-2%5Cend%7Barray%7D%5Cright%5D%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%26-2%263%262%5C%5C0%263%26-2%260%5C%5C0%260%260%260%5Cend%7Barray%7D%5Cright%5D)
This gives the infinite many solution.
Answer: (4, -9)
<u>Step-by-step explanation:</u>
Use elimination method. Manipulate one (or both) equations to eliminate one of the variables and solve for the remaining variable. <em>I will be eliminating y</em>
6x + y = 15 → 2(6x + y = 15) → 12x + 2y = 30
-7x - 2y = -10 → 1(-7x + 2y = -10) → <u> -7x - 2y = -10</u>
5x = 20
x = 4
Next, replace "x" with "4" into either equation and solve for y.
6(4) + y = 15
24 + y = 15
y = -9
<u>Check:</u>
Plug in x = 4 and y = -9 into the other equation to verify it makes a true statement.
-7x - 2y = -10
-7(4) - 2(-9) = -10
-28 - -18 = -10
-28 + 18 = -10
-10 = -10 