We have
<span>q^2 - 9 = (q + 3)(g - 3)
</span>q^2 - 9---------------> (q+3)(q-3)
therefore
(q+3)(q-3)=(q + 3)(g - 3)
(q-3)=(g - 3)
q=g
Answer:
the answer will be x^3 + 2x^2 + 9x
Step-by-step explanation:
as :
volume = l* w* h
= X * (X + 2) * (X + 3)
= X ^ 2 + 2 X (X + 3)
= x ^2 (X + 3) + 2x (X + 3)
= x^3 + 3x +2x ^2 + 6x
= x^3 + 2x^2 + 9x
Step-by-step explanation:
<h3><u>Given</u><u>:</u><u>-</u></h3>
(√3+√2)/(√3-√2)
<h3><u>To </u><u>find</u><u>:</u><u>-</u></h3>
<u>Rationalised</u><u> form</u><u> </u><u>=</u><u> </u><u>?</u>
<h3><u>Solution</u><u>:</u><u>-</u></h3>
We have,
(√3+√2)/(√3-√2)
The denominator = √3-√2
The Rationalising factor of √3-√2 is √3+√2
On Rationalising the denominator then
=>[(√3+√2)/(√3-√2)]×[(√3+√2)/(√3+√2)]
=>[(√3+√2)(√3+√2)]×[(√3-√2)(√3+√2)]
=>(√3+√2)²/[(√3-√2)(√3+√2)]
=> (√3+√2)²/[(√3)²-(√2)²]
Since (a+b)(a-b) = a²-b²
Where , a = √3 and b = √2
=> (√3+√2)²/(3-2)
=> (√3-√2)²/1
=> (√3+√2)²
=> (√3)²+2(√3)(√2)+(√2)²
Since , (a+b)² = a²+2ab+b²
Where , a = √3 and b = √2
=> 3+2√6+2
=> 5+2√6
<h3><u>Answer:-</u></h3>
The rationalised form of (√3+√2)/(√3-√2) is 3+2√6+2.
<h3>
<u>Used formulae:-</u></h3>
→ (a+b)² = a²+2ab+b²
→ (a-b)² = a²-2ab+b²
→ (a+b)(a-b) = a²-b²
→ The Rationalising factor of √a-√b is √a+√b
Answer:
(1,4), (2,2) (3,0)
Step-by-step explanation:
adjust the equation so that the y is isolated so subtract 4 x
2y=4x +12
Every number is divisible by 2 so you can further isolate the y
y=-2x+6
Plug your x coordinates into the equation so get the y coordinates
The question is incomplete :
The height, width and Lenght isn't Given. However, we can create an hypothetical scenario, with a height 6, length 8 and width 4
Answer:
192 unit³
Step-by-step explanation:
The volume of the card box :
Recall the volume of box formula :
V = length * width * height
Volume = 8 * 6 * 4
Volume = 192 unit³
This is the procedure for any given dimension of the card deck.