Answer:
the square root of 5 2.236
Answer:
The point of intersection between the 2 graphs.
Answer:
A.... -5
Step-by-step explanation:
<u><em>-35 + 30 = -5</em></u>
The measure of a central angle is equal to measure of a minor arc. That makes m<GEH=17x+12. By the Vertical Angles Theorem, m<GEH and m<IEF are equal to each other (m<GEH=17x+12=m<IEF). By the same theorem, m<FEG and m<IEH are also equal (m<FEG=8x-7=m<IEH). The angles in a circle must all add up to 360 degrees, 2(17x+12)+2(8x-7)=360. Solve for x, then plug x into the equation for m<IEF.
Hope this helps!
Answer:
Step-by-step explanation:
Hello, first, let's use the product rule.
Derivative of uv is u'v + u v', so it gives:
![f(x)=(x^3-2x+1)(x-3)=u(x) \cdot v(x)\\\\f'(x)=u'(x)v(x)+u(x)v'(x)\\\\ \text{ **** } u(x)=x^3-2x+1 \ \ \ so \ \ \ u'(x)=3x^2-2\\\\\text{ **** } v(x)=x-3 \ \ \ so \ \ \ v'(x)=1\\\\f'(x)=(3x^2-2)(x-3)+(x^3-2x+1)(1)\\\\f'(x)=3x^3-9x^2-2x+6 + x^3-2x+1\\\\\boxed{f'(x)=4x^3-9x^2-4x+7}](https://tex.z-dn.net/?f=f%28x%29%3D%28x%5E3-2x%2B1%29%28x-3%29%3Du%28x%29%20%5Ccdot%20v%28x%29%5C%5C%5C%5Cf%27%28x%29%3Du%27%28x%29v%28x%29%2Bu%28x%29v%27%28x%29%5C%5C%5C%5C%20%5Ctext%7B%20%2A%2A%2A%2A%20%7D%20u%28x%29%3Dx%5E3-2x%2B1%20%5C%20%5C%20%5C%20so%20%5C%20%5C%20%5C%20u%27%28x%29%3D3x%5E2-2%5C%5C%5C%5C%5Ctext%7B%20%2A%2A%2A%2A%20%7D%20v%28x%29%3Dx-3%20%5C%20%5C%20%5C%20so%20%5C%20%5C%20%5C%20v%27%28x%29%3D1%5C%5C%5C%5Cf%27%28x%29%3D%283x%5E2-2%29%28x-3%29%2B%28x%5E3-2x%2B1%29%281%29%5C%5C%5C%5Cf%27%28x%29%3D3x%5E3-9x%5E2-2x%2B6%20%2B%20x%5E3-2x%2B1%5C%5C%5C%5C%5Cboxed%7Bf%27%28x%29%3D4x%5E3-9x%5E2-4x%2B7%7D)
Now, we distribute the expression of f(x) and find the derivative afterwards.
![f(x)=(x^3-2x+1)(x-3)\\\\=x^4-2x^2+x-3x^3+6x-4\\\\=x^4-3x^3-2x^2+7x-4 \ \ \ so\\ \\\boxed{f'(x)=4x^3-9x^2-4x+7}](https://tex.z-dn.net/?f=f%28x%29%3D%28x%5E3-2x%2B1%29%28x-3%29%5C%5C%5C%5C%3Dx%5E4-2x%5E2%2Bx-3x%5E3%2B6x-4%5C%5C%5C%5C%3Dx%5E4-3x%5E3-2x%5E2%2B7x-4%20%5C%20%5C%20%5C%20so%5C%5C%20%5C%5C%5Cboxed%7Bf%27%28x%29%3D4x%5E3-9x%5E2-4x%2B7%7D)
Hope this helps.
Do not hesitate if you need further explanation.
Thank you