The shot putter should get out of the way before the ball returns to the launch position.
Assume that the launch height is the reference height of zero.
u = 11.0 m/s, upward launch velocity.
g = 9.8 m/s², acceleration due to gravity.
The time when the ball is at the reference position (of zero) is given by
ut - (1/2)gt² = 0
11t - 0.5*9.8t² = 0
t(11 - 4.9t) = 0
t = 0 or t = 4.9/11 = 0.45 s
t = 0 corresponds to when the ball is launched.
t = 0.45 corresponds to when the ball returns to the launch position.
Answer: 0.45 s
Answer:
5.88×10⁸ W
Explanation:
Power = energy / time
P = mgh / t
P = (m/t) gh
P = (1.2×10⁶ kg/s) (9.8 m/s²) (50.0 m)
P = 5.88×10⁸ W
Answer:
The acceleration of the satellite is 
Explanation:
The acceleration in a circular motion is defined as:
(1)
Where a is the centripetal acceleration, v the velocity and r is the radius.
The equation of the orbital velocity is defined as
(2)
Where r is the radius and T is the period
For this particular case, the radius will be the sum of the high of the satellite (
) and the Earth radius (
) :


Then, equation 2 can be used:
⇒ 


Finally equation 1 can be used:

Hence, the acceleration of the satellite is 
Answer:
The law of conservation of momentum states that the total momentum of interacting objects does not <u>change</u>. This means the total momentum <u>before</u><u> </u>a collision or explosion is equal to the total momentum <u>after</u><u> </u>a collision or explosion.