Answer:

Explanation:
<u>Motion with Constant Acceleration</u>
A body moves with constant acceleration when the speed changes uniformly in time. The equation used to find the final speed vf is

Where vo is the initial speed, a is the acceleration, and t is the time.
The cyclist has an initial speed of vo=10 miles/hour and ends up at vf=20 miles/hour in t=5 seconds.
Both speeds are given in miles/hour and we must convert it to m/s:
1 mile/hour = 0.44704 m/s
10 mile/hour = 4.47 m/s
20 mile/hour = 8.94 m/s
The acceleration is calculated by solving for a:



The statement can't be true. Objects with different masses held at the same height don't have the same gravitational potential energy.
<span>Kinetic energy increases and potential energy decreases.
</span>
Have everything in control and in order and discuss about different issues.
Frost will disturb the smooth flow of air over the wing, unpleasantly
distressing its lifting competence. In other words, this spoils the even flow
of air over the wings, by this means decreasing lifting capability. Also, frost
may avoid the airplane from becoming flying at normal departure speed.