Answer:
-384.22N
Explanation:
From Coulomb's law;
F= Kq1q2/r^2
Where;
K= constant of Coulomb's law = 9 ×10^9 Nm^2C-2
q1 and q2 = magnitudes of the both charges
r= distance of separation
F= 9 ×10^9 × −7.97×10^−6 × 6.91×10^−6/(0.0359)^2
F= -495.65 × 10^-3/ 1.29 × 10^-3
F= -384.22N
Answer:
nuclear battery to generate energy
Answer:
120s^-1
Explanation:
v=12v
I=10A
and since rate is with time, therefore rate=energy/time.
H=IV
10×12=120/s
therefore the rate is 120s^-1
Answer:
3x10^8=3f f=1x10^8 It think it is hopeful
Answer:
magnitude of the induced emf in the coil is 0.0153 V
Explanation:
Given data
no of turns = 20
area = 0.0015 m²
magnitude B1 = 4.91 T/s
magnitude B2 = 5.42 T/s
to find out
the magnitude of the induced emf in the coil
solution
we know here
emf = -n A d∅ /dt
so here n = 20 and
A = 0.0015
and d∅ = B2 - B1 = 5.42 - 4.91
d∅ = 0.51 T and dt at 1 sec
so put all value
emf = -n A d∅ /dt
emf = -20 (0.0015) 0.51 / 1
emf = - 0.0153
so magnitude of the induced emf in the coil is 0.0153 V