<span>When two or more identical capacitors (or resistors) are connected
in series across a potential difference, the potential difference divides
equally among them.
For example, if you have nine identical capacitors (or resistors) all
connected end-to-end like elephants in a circus parade, and you
connect the string to a source of 117 volts (either AC or DC), then
you will measure
(117v / 9) = 13 volts
across each unit in the string.</span>
Answer:
R=V/I=6/2=3ohm
time =5minutes =5*60=300seconds
I=2A
Heat =I^2Rt=(2)^2*3*300=4*900=3600J
Answer:
v₃ = 3.33 [m/s]
Explanation:
This problem can be easily solved using the principle of linear momentum conservation. Which tells us that momentum is preserved before and after the collision.
In this way, we can propose the following equation in which everything that happens before the collision will be located to the left of the equal sign and on the right the moment after the collision.

where:
m₁ = mass of the car = 1000 [kg]
v₁ = velocity of the car = 10 [m/s]
m₂ = mass of the truck = 2000 [kg]
v₂ = velocity of the truck = 0 (stationary)
v₃ = velocity of the two vehicles after the collision [m/s].
Now replacing:
![(1000*10)+(2000*0)=(1000+2000)*v_{3}\\v_{3}=3.33[m/s]](https://tex.z-dn.net/?f=%281000%2A10%29%2B%282000%2A0%29%3D%281000%2B2000%29%2Av_%7B3%7D%5C%5Cv_%7B3%7D%3D3.33%5Bm%2Fs%5D)
There is approximately 2.54 cm that equals to 1 inch. So your closet answer would be the first choice. :)
Answer: 12,600,000Cm
Explanation:
From the data's;
Charges(q) = 1.8 PC equal to 1.8 x 10^¹²C
Distance = 7 micrometer, is equal to 0.0000070m
From the equation of electric dipole moment, p= q x d, where q= charge, d=distance and p is the dipole moment.
Then we have 1.8x10^¹² x 0.0000070= 12,600,000Cm
NB: The charges are identical.