Answer:
9.00
Explanation:
Data:
[H⁺] = 1.0 × 10⁻⁹ mol·L⁻¹
Calculation:
pH = -log[H⁺] = -log(1.0 × 10⁻⁹) = -log(1.0) - log(10⁻⁹) = -0.00 - (-9) = -0.00 + 9 = 9.00
Answer:
0.00735°C
Explanation:
By seeing the question, we can see the elevation in boiling point with addition of BaCl₂ in water
⠀

⠀
⠀
<u>The</u><u> </u><u>elevation</u><u> </u><u>in</u><u> </u><u>boiling</u><u> </u><u>point</u><u> </u><u>is</u><u> </u><u>a</u><u> </u><u>phenomenon</u><u> </u><u>in</u><u> </u><u>which</u><u> </u><u>there</u><u> </u><u>is</u><u> </u><u>increase</u><u> </u><u>in</u><u> </u><u>boiling</u><u> </u><u>point</u><u> </u><u>in</u><u> </u><u>solution</u><u>,</u><u> </u><u>when</u><u> </u><u>the</u><u> </u><u>particular</u><u> </u><u>type</u><u> </u><u>of</u><u> </u><u>solute</u><u> </u><u>is</u><u> </u><u>added</u><u> </u><u>to</u><u> </u><u>pure</u><u> </u><u>solvent</u><u>.</u>
⠀
⠀

⠀
⠀
Where 'i' is van't hoff factor which represents the ratio of observed osmotic pressure and the value to be expected.
and 'i' is 3 (as given in the question)
⠀
'Kb' is molal boiling point constant. And it's value is 0.51°C/mol(given in question)
⠀
'm' represent the molality of solution. Molatity is no. of moles of solution present in 1kg of solution.
⠀
⠀
<u>To</u><u> </u><u>find</u><u> </u><u>molality</u><u>,</u><u> </u><u>we</u><u> </u><u>have</u><u> </u><u>to</u><u> </u><u>divide</u><u> </u><u>no</u><u>.</u><u> </u><u>of</u><u> </u><u>moles</u><u> </u><u>of</u><u> </u><u>solute</u><u> </u><u>by</u><u> </u><u>weight</u><u> </u><u>of</u><u> </u><u>solution</u>
⠀
While first we need to no. of moles

⠀
⠀
<u>Now</u><u>,</u><u> </u><u>we</u><u> </u><u>will</u><u> </u><u>find</u><u> </u><u>molality</u>
⠀

⠀
⠀

⠀

⠀
⠀
⠀
<u>Henceforth</u><u>,</u><u> </u><u>the</u><u> </u><u>change</u><u> </u><u>in</u><u> </u><u>boiling</u><u> </u><u>point</u><u> </u><u>is</u><u> </u><u>0</u><u>.</u><u>0</u><u>0</u><u>7</u><u>3</u><u>5</u><u>°</u><u>C</u><u>.</u>
2AgNO3 (aq) + Na2CO3 (aq) --> Ag2CO3 (s) + 2NaNO3 (aq)
2Ag(+) (aq) + CO3(2-) (aq) --> Ag2CO3 (s)
hope it helps
The average rate of reaction over a given interval can be calculated by taking the difference of concentration on a particular given reactant, and dividing it by the total time. In this case, (1.00 M - 0.655 M)/30 s = 0.0115 M/s, or 0.0115 mol/L-s, and this is the final rate of reaction.
Answer:
A.) ![K_b = \frac{[CH_3NH_3^+][OH^-]}{[CH_3NH_2]}](https://tex.z-dn.net/?f=K_b%20%3D%20%5Cfrac%7B%5BCH_3NH_3%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BCH_3NH_2%5D%7D)
Explanation:
The general Kb expression is:
![K_b = \frac{[HA][OH^-]}{[A^-]}](https://tex.z-dn.net/?f=K_b%20%3D%20%5Cfrac%7B%5BHA%5D%5BOH%5E-%5D%7D%7B%5BA%5E-%5D%7D)
In this equation
-----> Kb = equilibrium constant
-----> [HA] = acid
-----> [A⁻] = base
Since liquids are not included in equilibrium expressions, H₂O should not be present. The products are in the numerator while the reactant are in the denominator. In this reaction, CH₃NH₂ is acting as a base and CH₃NH₃⁺ is acting as an acid.
As such, the expression is:
![K_b = \frac{[CH_3NH_3^+][OH^-]}{[CH_3NH_2]}](https://tex.z-dn.net/?f=K_b%20%3D%20%5Cfrac%7B%5BCH_3NH_3%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BCH_3NH_2%5D%7D)