<u>Answer:</u> The molar mass of the insulin is 6087.2 g/mol
<u>Explanation:</u>
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:

Or,

where,
= osmotic pressure of the solution = 15.5 mmHg
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (insulin) = 33 mg = 0.033 g (Conversion factor: 1 g = 1000 mg)
Volume of solution = 6.5 mL
R = Gas constant = 
T = temperature of the solution = ![25^oC=[273+25]=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B273%2B25%5D%3D298K)
Putting values in above equation, we get:

Hence, the molar mass of the insulin is 6087.2 g/mol
Answer:
See explanation below
Explanation:
First, we need to understand that the monochlorination of an alkane like this one, involves substitution of one of the atoms of hydrogen of the molecule for an atom of chlorine.
This reaction takes place when the alkane reacts with Cl₂ in presence of light or heat.
When this happens, the first step involves the breaking of the double bond of the chlorine to form the ion Cl⁻.
The next step involves the substraction of the hydrogen of the molecule by the Chlorine. This will leave the alkane with a lone pair available for reaction.
The third step, the alkane with the lone pair of electron substract a chlorine for the beggining and form the mono chlorinated product.
The final step involves forming the remaining products with the remaining reagents there.
In the picture attached you have the mechanism and product for this reaction:
Answer:
C
Explanation:
It afffects changes in pressure and temperature not melting and boiling points
Answer:
All atoms of the same element have always have the same amount of protons.
Explanation:
Atoms of the same element have always have the same amount of protons but not always the same electrons and neutrons. If an atom gains or loses one of its valance electrons, the electrons on the outermost shell, then it becomes ionized. Also not all atoms of the same element have the same amount of neutron. This is called an isotope. A good example would be Carbon 13. Normally, Carbon atoms have an atomic mass of 12 AMU or 12 atomic mass units. However, Carbon atoms have an atomic mass of 13 AMU, consisting of 7 neutrons instead of 6 neutrons. So the only thing that all atoms of the same element have in common is the amount of protons.
The answer is Reduction. All three methods (convection, radiation, and conduction) are all ways of transferring heat. Convection is the transfer of heat by means of a medium such as air. Conduction is the transfer of heat from the contact of two surfaces at different temperatures. Radiation is the transfer of heat via electromagnetic waves.
Reduction is a chemical reaction that involves the gain of electrons. It is the opposite of oxidation which involves the loss of electrons.