Answer:
The new temperature is 894 K or 621 °C
Explanation:
Step 1: Data given
Initial volume of the container = 2.000L
Initial temperature = 25.0 °C = 298 K
Volume increased to 6.00 L
Step 2: Calculate the new temperature
V1/T1 = V2/T2
⇒with V1 = the initial volume = 2.00L
⇒with T1 = the initial temperature = 25 °C = 298 K
⇒with V2 = the increased volume 6.00 L
⇒with T2 = the new temperature
2.00 L / 298 K = 6.00 L / T2
T2 = 894 K = 621 °C
The new temperature is 894 K or 621 °C
Answer:
45.0 L is the volume of gas will the balloon contain at 1.35 atm and 253 K.
Explanation:
Using Ideal gas equation for same mole of gas as
Given ,
V₁ = 25.0 L
V₂ = ?
P₁ = 2575 mm Hg
Also, P (atm) = P (mm Hg) / 760
P₁ = 2575 / 760 atm = 3.39 atm
P₂ = 1.35 atm
T₁ = 353 K
T₂ = 253 K
Using above equation as:

Solving for V₂ , we get:
<u>V₂ = 45.0 L</u>
45.0 L is the volume of gas will the balloon contain at 1.35 atm and 253 K.
Answer:
Answer Expert Verified
The lights shown in the figure comes from the outermost layer of the Sun. This layer is called photosphere. This is the layer from where the light of the Sun is radiated, before travelling through space and reaching us.
ΔH=MCΔT
ΔH=100 x 4.2 x 4
ΔH=1680
ΔH per mole = ΔH ÷ moles
ΔH per mole = 1680 ÷ 0.02
<span>ΔH per mole= 84000Jmol
</span>84000 ÷ 1000 = 84KJmol
its exothermic as heat is given out into the solution