Salinity has units of grams NaCl or salt per kilogram solution. We can use the density given and the molar mass of the salt to convert from salinity to molarity. We do as follows:
( 5.6 g / kg ) ( 1.03 kg / L ) ( 1 mol / 58.44 g ) = 0.0987 mol NaCl / L
Answer:
Data is not valid
Explanation:
When two liquids having different temperatures are mixed, regardless of the volumes, the final mix temperature will ALWAYS be between the initial temperature values.
1st Law Thermo => Law of Conservation of Energy => Energy can not be created nor destroyed, only changed in form. Mixing 22°C with 75°C will NOT result in a mix having a final temperature of 80°C.
∑ΔE = 0 => (mcΔT)₁ + (mcΔT)₂ = 0
[(20g)(1cal/g·°C)(Tₓ - 22°C)] + [(80g)(1cal/g·°C)(Tₓ - 75°C)] = 0
=> 20(Tₓ - 22) + 80(Tₓ - 75) = 0
=> 20Tₓ - 440 + 80Tₓ - 75 = 0
=> 100Tₓ = 440 + 75 = 515
=> Tₓ = (515/100)°C = 51.5°C final mix temperature
Answer:
by using the chromatography you can separate different color
NH will <span>accept a proton and become NH4+
Bases follow </span>

, with

in our case.