Answer:
Explanation:
Given
Temperature of solid 
Einstein Temperature 
Heat Capacity in the Einstein model is given by
![C_v=3R\left [ \frac{T_E}{T}\right ]^2\frac{e^{\frac{T_E}{T}}}{\left ( e^{\frac{T_E}{T}}-1\right )^2}](https://tex.z-dn.net/?f=C_v%3D3R%5Cleft%20%5B%20%5Cfrac%7BT_E%7D%7BT%7D%5Cright%20%5D%5E2%5Cfrac%7Be%5E%7B%5Cfrac%7BT_E%7D%7BT%7D%7D%7D%7B%5Cleft%20%28%20e%5E%7B%5Cfrac%7BT_E%7D%7BT%7D%7D-1%5Cright%20%29%5E2%7D)

Substitute the values


Answer & Explanation:
function Temprature
NYC=[33 33 18 29 40 55 19 22 32 37 58 54 51 52 45 41 45 39 36 45 33 18 19 19 28 34 44 21 23 30 39];
DEN=[39 48 61 39 14 37 43 38 46 39 55 46 46 39 54 45 52 52 62 45 62 40 25 57 60 57 20 32 50 48 28];
%AVERAGE CALCULATION AND ROUND TO NEAREST INT
avgNYC=round(mean(NYC));
avgDEN=round(mean(DEN));
fprintf('\nThe average temperature for the month of January in New York city is %g (F)',avgNYC);
fprintf('\nThe average temperature for the month of January in Denvar is %g (F)',avgDEN);
%part B
count=1;
NNYC=0;
NDEN=0;
while count<=length(NYC)
if NYC(count)>avgNYC
NNYC=NNYC+1;
end
if DEN(count)>avgDEN
NDEN=NDEN+1;
end
count=count+1;
end
fprintf('\nDuring %g days, the temprature in New York city was above the average',NNYC);
fprintf('\nDuring %g days, the temprature in Denvar was above the average',NDEN);
%part C
count=1;
highDen=0;
while count<=length(NYC)
if NYC(count)>DEN(count)
highDen=highDen+1;
end
count=count+1;
end
fprintf('\nDuring %g days, the temprature in Denver was higher than the temprature in New York city.\n',highDen);
end
%output
check the attachment for additional Information
Answer:
Context
Explanation:
It is of great value for an engineer to keep the context of his/her experiment in mind.
Answer:
5984.67N
Explanation:
A 14 inch diameter pipe is decreased in diameter by 2 inches through a contraction. The pressure entering the contraction is 28 psi and a pressure drop of 2 psi occurs through the contraction if the upstream velocity is 4.0 ft/sec. What is the magnitude of the resultant force (lbs) needed to hold the pipe in place?
from continuity equation
v1A1=v2A2
equation of continuity
v1=4ft /s=1.21m/s
d1=14 inch=.35m
d2=14-2=0.304m
A1=pi*d^2/4
0.096m^2
a2=0.0706m^2
from continuity once again
1.21*0.096=v2(0.07)
v2=1.65
force on the pipe
(p1A1- p2A2) + m(v2 – v1)
from bernoulli
p1 + ρv1^2/2 = p2 + ρv2^2/2
difference in pressure or pressure drop
p1-p2=2psi
13.789N/m^2=rho(1.65^2-1.21^2)/2
rho=21.91kg/m^3
since the pipe is cylindrical
pressure is egh
13.789=21.91*9.81*h
length of the pipe is
0.064m
AH=volume of the pipe(area *h)
the mass =rho*A*H
0.064*0.07*21.91
m=0.098kg
(193053*0.096- 179263.6* 0.07) + 0.098(1.65 – 1.21)
force =5984.67N